## Elementary Mathematics 6101

## Exercise Sheet 2 Solutions

## September 9, 2011

- 1. (a) at the points x=2,-2 the expression will be become undefined but will be fine for all other values, so the domain is  $\mathbb{R}/\{-2,2\}$ 
  - (b) The domain is all of  $\mathbb{R}$ .
  - (c) For  $f(x=\sqrt{x^2-4})$ , we know that you can't take the square root of a negative number and so  $x^2-4>0 \Rightarrow |x|>2$  So the domain is  $-\infty \leqslant x \leqslant -2$  and  $2 \leqslant x \leqslant \infty$
  - (d) Taking cube roots of negative numbers is fine, so the domain is all of  $\mathbb R$
- 2. (a)  $f \circ g(x) = g(f(x)) = (x^2 1)^{-1}$ 
  - (b)  $g \circ f(x) = f(g(x)) = (x-1)^{-2}$
  - (c)  $g \circ h(x) = h(g(x)) = \sqrt{(x-1)^{-1} + 1} = \sqrt{\frac{x}{x-1}}$
  - (d)  $h \circ f(x) = f(h(x)) = (\sqrt{x+1})^2 = x+1$
- 3. We have  $f \circ h(x) = h(f(x)) = \sqrt{x+1} = \sqrt{f(x)}$  and so replacing f(x) by X say, we have  $h(X) = \sqrt{X}$ , so we can say that  $h(x) = \sqrt{x}$
- 4. (a) To find the inverse write:  $x = y^3 + 1$ , we re-arrange the equation to find y, so  $y^3 = x 1$  which in turn shows that  $y = (x 1)^{\frac{1}{3}}$ , so  $f^{-1}(x) = (x 1)^{\frac{1}{3}}$ 
  - (b)  $x = y 4 \Rightarrow y = x + 4$ , so  $g^{-1}(x) = x + 4$
  - (c)  $x = 1 \frac{1}{y} \Rightarrow \frac{1}{y} = 1 x \Rightarrow y = (1 x)^{-1}$  and so  $h^{-1}(x) = (1 x)^{-1}$