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1 Basic Notions

1.1 Basic Algebra

This course will only be concerned with real and complex1 numbers. The �rst
(possibly) new concept is that of a bracket. Suppose that you were asked to
add 5 and 3 and divide the answer by 4, one way that you might write this
down is 5+3� 4 but this might be interpreted as 5 add 3 divided by 4 which
would result in the answer 534 rather than the proper answer which would be
2.
We need a way of writing this, for this we use the bracket ( and ), anysum
in the bracket will be a separate sum, so the original sum in question would
be written as:

(5 + 3) � 4 = 8=4 = 2

Whereas the other sum would be:

5 + (3 � 4) = 5 +
3
4

= 5
3
4

So essentially all a bracket is is just a separate calculation, so for example
when we see:

2 + (3 + 1)

All this means is do the sum in the brackets �rst, and therefore:

(3 + 1) = 4

and the sum reduces down to:

2 + 4 = 6 :
1These will be de�ned later on in the course
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There are some general rules that go along with brackets which we will state
in the axioms and we will give a n example of how the rule works. Algebra
can be thought of as the general relationship between numbers and as such
it is possible to write down to some general rules of how numbers work. The
laws of algebra2 are the following:

1. Given two numbersa and b, then the sum and the product are both
numbers. This is written asa + b and a � b= a � b= ab.

2. Addition and multiplication of numbers areassociative. So given three
numbersa; b; cthen the following holds: a + ( b+ c) = ( a + b) + c and
a � (b� c) = ( a � b) � c.

3. Addition and multiplication of numbers arecommutative, the order of
addition or multiplication doesn't matter: a+ b= b+ a and a� b = b� a.

4. There are numbers written 0 and 1, which satisfya + 0 = 0 + a = a
and 1� a = a � 1 = a

5. There are additive and multiplicative inverses, so there is a number
which is written � a such that a+ ( � a) = ( � a) + a = 0. Likewise there
are numbers denoteda� 1 such that a� 1 � a = a � a� 1 = 1.

6. Distributivity of multiplication over addition. Given three numbers
a; b; c, the following holds: a � (b+ c) = a � b+ a � c

Let's take some concrete examples, takea = 1; b= 2; c = 3,

1. The second law says we can say 1 + (2 + 3) = (1 + 2) + 3, which says
that 1 + 5 = 3 + 3 = 6

2. The third law says you don't need to worry about the order when you
add or multiply, so 1 + 2 = 2 + 1 = 3 and 2 � 3 = 3 � 2 = 6.

3. The Distributivity law is easy to understand, it says that 1� (2 + 3) =
1 � 2 + 1 � 3 = 2 + 3 = 5

In this course and most of mathematics the notation for inverses are as
follows: a + ( � b) = a � b for additive inverses, instead of saying we add the
additive inverse ofbto a, we say that wesubtract bfrom a . For multiplicative
inverses we use the notation:

a� 1 =
1
a

(1)

2These axioms de�ne what is known as a�eld in maths
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There is some more notation that is important which pertains multiplication
with x and itself. We write x � x = x2 and x � x � x = x3, so if we multiply x
by itself n times then the notation is:

n timesz }| {
x � � � x = xn (2)

The laws of powers (as they are known) are the following:

1. xn � xm = xn+ m , so
n timesz }| {
x � � � x � x � � � x| {z }

m times

=
n + m timesz }| {

x � � � x

2. xn � xm = xn� m Consider an examplex4 � x2

x4

x2
=

x/ � x/ � x � x

x/ � x/
= x � x = x2 (3)

3. If n = 0 then we can see as a result of the power law we get:

x � m =
1

xm
(4)

4. x0 = 1, this comes from:

x0 = x1� 1 =
x/

x/
= 1 (5)

5. (xn )m = xnm , so (x2)3 = ( x � x) � (x � x) � (x � x) = x � x � x � x � x � x = x6

6. x1=n = n
p

x, this is notation really

7. xm=n = ( x1=n)m , this applies two previous laws.

1.1.1 Addition and Subtraction

It is possible to add and subtract numbers in the form of algebraic expres-
sions, so for example:

2ab+ 5ab= (2 + 5) ab= 7ab (6)

Using the distribution of multiplication over addition and the expression can
be simpli�ed. Consider the expressionab+ ac, this expressioncannot be
simpli�ed as they contain unlike terms.
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1.1.2 Factorisation

The basic idea of factoring is to reduce an expression into its most simplest
parts. For example with numbers, the number 15 has factors 3 and5, as
15 = 3 � 5. The reason why we can do this is because of the sixth law of
algebra:

a � (b+ c) = a � b+ a � c (7)

We say that the factors ofab+ ac area and b+ c. Let's examine the following:
(a + b)(c + d). We appeal to the sixth law of algebra:

(a + b)(c + d) = a(c + d) + b(c + d) Using the sixth law on the �rst bracket

= ac+ ad+ bc+ bd Using the sixth law again

The factors here area+ b and c+ d. Here's another example, �nd the factors
of ax + 3x3, The sixth law applies here and we see thatax + 3x = x(a + 3)
and the factors arex and a + 3. There are some important expansions to
know when trying to factorise an expression:

(ax + b)2 = a2x2 + 2abx+ b2 (8)

(ax � b)2 = a2x2 � 2abx+ b2 (9)

(ax + b)(ax � b) = a2x2 � b2 (10)

(ax + b)(cx + d) = acx2 + ( ad+ bc)x + bd (11)

Factors of the formax + b are calledlinear factors. Let's have an example,
let's try and factorise x2 + 8x + 15 into linear factors. We �rst note that
there is a term in x2, that means that there are two linear factors and that
the coe�cient of the x2 terms is 1, so for the �rst step we write:

x2 + 8x + 15 = ( x+ )( x+ ) (12)

Using the fourth expansion on the list, we can compare,a = c = 1, which
shows that:

(x + b)(x + d) = x2 + ( b+ d)x + bd= x2 + 8x + 15

So we need to �nd two numbers which when added together give 8 and
when multiplied together yield 15, these numbers are 3 and 5 and so the
Factorisation of x2 + 8x + 15 is x2 + 8x + 15 = ( x + 3)( x + 5)

1.2 Di�erent Types of Numbers

This section deals with the di�erent types of numbers that you will meet in
maths.

3x will be used throughout this course, so get used to it.
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1.2.1 N - Natural Numbers

Natural numbers are whole numbers bigger than zero. SoN = f 1; 2; 3; : : :g.
Sometimes when zero is included, the numbers are writtenN0 = 0; 1; 2; 3; : : :.
If a is a natural number then the notationa 2 N is used and we saya belongs
to the natural numbers.

1.2.2 Z - Integers

These are all the whole numbers including zero. SoZ = f : : : ; � 2; � 1; 0; 1; 2; : : :g.
The natural numbers are contained within the integers

1.2.3 Q - Rational Numbers

These are numbers of the form:

a
b

; b6= 0

They obey all the laws of algebra stated at the start of these notes. Some
care must be taken when adding and multiplying rational numbers, it isonly
possible to add two fractions with the same denominator, i.e.

a
b

+
c
b

=
a + c

b

From here it is possible to write down a general law of addition of two frac-
tions:

a
b

+
x
y

=
a
b

� 1 +
x
y

� 1

=
a
b

y
y

+
x
y

b
b

=
ay
by

+
bx
by

=
ay + bx

by

The inverse of a fraction is also quite easy to calculate. Let us �nd the inverse
or reciprocal of the fractiona=b, write the inverse asI , then according to the
�fth law of algebra, I can write:

a
b

� I = 1
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Multiplying this equation throughout by b to obtain:

a � I =
a
b

� b� I = a �
b
b

� I = 1 � b= b

Using the fourth law of algebra and the rules for powers. Multiplying by a� 1

(or dividing by a if you prefer), shows that:

I = a� 1 � a � I =
a
a

� I = 1 � I = a� 1 � b=
b
a

This is sometimes written as the rule:

1=
a
b

=
b
a

(13)

1.2.4 R - The Real Numbers

There are numbers which are not rational numbers, for example there is a
number x, which when squared gives the answer 2, sox2 = 2. Indeed you
can prove that there is no rational whose square is 2. Suppose there was, the
there would bea; b2 N4 wherex = a=bsuch that:

2 =
a2

b2
(14)

Or a2 = 2b2, it is presumed that a and b have no common factor, then we
have shown thata2 is even, so this also shows thata is even. Write a = 2n
and insert it back into the equation

(2n)2 = 4n2 = 2b2 ) b2 = 2n2

So b2 is even which in turn shows thatb is even but we assumed thata
and b have no common factor which contradicts our original premise and
therefore there is no rational number whose square is 2, this realnumber is
usually written as

p
2. Real numbers are typically irrational numbers which

when represented as decimals and have an in�nite non repeating decimal. A
famous irrational number is� = 3:1415927:::

1.3 The Modulus of a Number

Let a be any number, positive or negative, then we de�ne themodulus, jaj
as the following:

jaj =

8
<

:

a if a is positive
0 if a = 0

� a if a is negitive

4The notation a 2 X means that a is a member of the setX
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So we can think of the modulus as making all numbers as positive regard-
less of the sign of them to start with. This is a very important concept in
mathematics. For examplej � 3j = 3, and j2j = 2.

1.4 The Factorial

The factorial of a natural numbern is de�ned to be:

n! = n � (n � 1) � (n � 2) � (n � 3) � (n � 4) � � � 3 � 2 � 1 (15)

so as an example 4! = 4� 3 � 2 � 1 = 24 and 3! = 3 � 2 � 1 = 6, by de�nition
0! = 1.

1.5 Inequalities

An inequality compares two unequal quantities. Consider the numbers 3 and
8, we write 8> 3 to denote that 8 is greater than 3. Likewise we write 3< 8,
as 3 is less than 8. Some other notation is used for less than or equalto and
greater than or equal to which are written as 36 8 and 8> 3 respectively.
It is possible to multiply equalities by positive numbers and not change the
direction of the inequality, if a > b and k > 0, then

ka > kb (16)

and likewise if a 6 b. Take for example 8> 3, and multiplying through by
2 say, will result in 2� 8 > 2 � 3, which means 16> 6 which is true. When
multiplying through by a negative number, the direction of the inequality,
consider 8 and 3 again, multiply them by� 1 to get � 8 and � 3 but now
� 3 > � 8. So in general ifa > b and k < 0, then

ka 6 kb (17)

and likewise if a 6 b. Adding any numerical quantity to both sides of the
inequality will not change the sign of the inequality so ifa > b, then

a + k > b+ k (18)

Together the rules are fora > b:

a + k > b+ k (19)

ak > bk; k > 0 (20)

ak 6 bk; k < 0 (21)
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The modulus is often used in relation to inequalities, consider the inequality
jxj 6 1, if x is positive this just means that:

x 6 1

However if x is negative,jxj = � x and so the inequality reads:

� x 6 1

To �nd out what this means for x we have to multiply through by � 1 and
according to the rules stated before, we are required to change the direction
of the inequality, so:

� (� x) > � 1 ) x > � 1

So the inequality jxj 6 1 is really two inequalities in one and in full it means
that:

� 1 6 x 6 1

There is a famous inequality related to inequalities called the triangle in-
equality which states that if a and b are two numbers then:

ja + bj 6 jaj + jbj (22)

This is used everywhere in maths.
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2 Functions & Graphs

Basically a map is a rule to go from one set of numbers into another set of
numbers, for example takex 2 R and my rule will be to square it, so we
write x 7! x2 and say x maps to x2. The domain of a map (and hence a
function) will be the set of numbers that the map (or function) maps from.
We can draw a picture of the map by writing the co-ordinates as (x; x2) and
plot a graph. Another example would bex 7! �

p
x, wherex > 0, the graph

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

x

x2

Figure 1: The mapx 7! x2

would be:
We have to be careful about our de�nition of our map as ifx < 0 then
we would be taking the square root of a negative number, and this is not
allowed5. This map is said to beunde�ned for x < 0 and we must exclude
it from the de�nition of our map. A function is a map where the map maps
to a single number. So the �rst example of a map (x 7! x2) we gave was
a function as well as a map but the second example (x 7! �

p
x) is not a

function as there are two possible values thatx can get mapped to. However
if we restrict the range of the function to +

p
x then we have a well de�ned

function: This function is written

f (x) =
p

x = x
1
2 (23)

There are other types of map that we have to be aware, consider the map
x 7! 1=x, the graph of this function is: There is only one point in the domain

5Yet, we will talk about complex numbers later
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Figure 3: The mapx 7!
p

x

10



-3 -2 -1 0 1 2 3

-6

-4

-2

0

2

4

6

x

x�
1

Figure 4: The mapx 7! x � 1

that need concern us and that is the pointx = 0 as the \number"

1
0

does not make and mathematical sense. So the mapx 7! x � 1 is not a
function. However, if " is a very small number, thenf (" ) = " � 1 � 1 is
still a perfectly reasonable positive number. Likewisef (� " ) = � " � 1 � 1 is
a perfectly reasonable negative number. The only problem isx = 0, so if
we remove this point from the domain then we have a perfectly well de�ned
function. We write Rnf 0g6 for the domain. The function is then written as

f : Rnf 0g ! R (24)

Example . Under what conditions is the expression
p

f (x)=x � 1 = 0 a
function? We �rst must re-arrange into something more understandable.

p
f (x)=x � 1 = 0

,
p

f (x)=x = 1

,
p

f (x) = x Multiplying by x

, f (x) = x2 Upon squaring

We start o� by setting the domain to be the whole real line. Leta > 0 and
examine the image of� a, f (� a) = ( � a)2 = a2, so negative numbers are
okay. What about 0, well 02 = 0, so zero is �ne, so this map is a function
with it's domain the whole real line.

6The notation X nf ag means take away the elementa from the set X
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Figure 5: The function f (x) = x2

Example . Under what conditions is the expression (x � 1)f (x) � 1 = (1 � x)2

a function if at all? We begin by re-arranging the expression:

(x � 1)f (x) � 1 = (1 � x)2

, (x � 1)f (x) = 1 + (1 � x)2

, f (x) =
1

x � 1
+

(1 � x)2

x � 1

, f (x) =
1

x � 1
+

(� (x � 1))2

x � 1

, f (x) =
1

x � 1
+

(( � 1)2(x � 1))2

x � 1

, f (x) =
1

x � 1
+

(x � 1)2

x � 1

, f (x) =
1

x � 1
+ ( x � 1)

The �rst thing we notice is that there is a 1=something. If the denominator is
at any point zero then the map is unde�ned mathematically, i.e. in thatcase
when x � 1 = 0 or when x = 1, so we exclude this from our domain. Apart
from that there are no problems with any other numbers, so the domain is
Rnf 1g.
Example . Under what condition is the expressionx(f (x))2 � 1 = 0 a func-
tion? We must �rst re-arrange this expression in the following way.

x(f (x))2 � 1 = 0

, x(f (x))2 = 1

, (f (x))2 =
1
x

Dividing by x
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Figure 6: The mapf (x) = ( x � 1)� 1 + x � 1

, f (x) = �
1

p
x

= � x � 1
2 Upon taking square roots

First of all we note that there is an ambiguity in the sign, one value of
x gives rise to two di�erent numbers. Therefore we are obliged to choose
a sign, either a plus or a minus. Given a choice of a sign, is the map a
function? Start out with the domain being the whole of the real lineR. Take
any positive numbera > 0 in the domain and look at the image of� a, this
will be7 f (� a) = +1 =

p
� a, however taking the square root of a negative

number isn't allowed, so we must restrict our domain to the numbersx
such that x > 0. Now look at 0, under our function this is mapped to 1=0
which as we've discussed before is mathematically meaningless, and sowe
must take this from our domain. The domain for our function is reduced to
the numbers x such that x > 0. We can see from previous examples that
restricted to this domain we can get two well de�ned functions,f (x) = 1 =

p
x

and f (x) = � 1=
p

x.

2.1 Sequences

A special sort of function which has the domain of the natural numbers, N,
which can have the range in the real numbers,R. So functionsan : N ! R,
a typical sequence is of the form:

an = 2 +
(� 1)n

n
(25)

7We're taking the positive sign for de�niteness
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Figure 7: The function f (x) = 1 =
p
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Figure 8: A sequence

Sequences are a large part of maths, we will be looking at thelimit of a
sequence asn ! 1 , and we will make this notion clear, so when we come to
the notion of the limit of a function, we will already have an idea.

2.2 Composition of Functions

We can take functions of functions, take for example the two functions:

g(x) = 1 +
1
x

; h(x) = x2
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Then we can look at the following functiong(h(x)) = g(x2), now all this is
is:

g(h(x)) = 1 +
1

f (x)
= 1 +

1
x2

Likewise we may examinef (g(x)) which is:

h(g(x)) = ( g(x))2 =
�

1 +
1
x

� 2

Note that h(g(x)) and g(h(x)) are not the same function, as a point of no-
tation, we write:

g � h(x) = h(g(x)); h � g(x) = g(h(x)) (26)

2.3 Inverse Functions

2.3.1 De�nition of Inverse Functions

The inverse of a functionf (x) is calledf � 1(x) and is de�ned as the following:

f � 1 � f (x) = f � f � 1(x) = x (27)

So what this means is if we take a point,a in the domain say and it takes
the valueb in the image, sob= f (a). The inverse functionf � 1 takes a point
in the image off (x), b and maps it to a point in the domain off (x), a, so
f � 1(b) = a

Figure 9: The Inverse Function

There is a well de�ned rule that goes froma to b and a well de�ned rule that
takes b to a.

2.3.2 The Graph of f (x) and f � 1(x)

Consider the curve obtained by re
ectingy = f (x) about the line y = x.
The re
ection of the point A(a; b) on the curve y = f (x) will be re
ected
to a point A0 whose points are (b; a), so we just interchange thex and y
co-ordinates.
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Figure 10: The Inverse Function

Example . Find the inverse function of the function:

f (x) = 1 �
1

x � 2
:

So we write the graph of this asy = 1 � (x � 2)� 1, to �nd the inverse function
we swap thex and y around to obtain x = 1 � (y � 2)� 1 and we arrange to
�nd y as a function ofx:

) x = 1 �
1

y � 2

)
1

y � 2
= 1 � x

) y � 2 =
1

1 � x
Taking the inverse

) y = 2 +
1

1 � x

So the inverse function is given by:

f � 1(x) = 2 +
1

1 � x

We can check to see if this is indeed the inverse by computingf � 1 � f (x) and
checking if this is just x.

f � 1 � f (x) = f (f � 1(x))

= 1 �
1

f � 1(x) � 2
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= 1 �
1

2 � (x � 1)� 1 � 2

= 1 �
1

� (x � 2)� 1

= 1 +
1

(x � 1)� 1

= 1 + x � 1

= x

Computing f � f � 1(x)

f � f � 1(x) = f � 1(f (x))

= 2 +
1

1 � f (x)

= 2 +
1

1 � (1 � (x � 2)� 1)

= 2 +
1

(x � 2)� 1

= 2 + x � 2

= x

So we have shown thatf � 1 � f (x) = f � f � 1(x) = x, so we have indeed
found the inverse. A intuitive way to think about inverses is if we can draw
a horizontal line and it crosses the graph at only one point.
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Figure 11: The Inverse Function

So for example that the red curve has an inverse because the horizontal
line only crosses the red curve at one and only one point. The purple curve
however, the horizontal line crosses the curve twice, which meansthat the
inverse does not exist. Although for both curves give a value ofy for a unique
value of x, however for the purple curve, it is possible to take a single value
of y and it will come from two possible values ofx, which is the reason why
the purple curve has no inverse.
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3 Linear Equations

3.1 Basic De�nitions

A linear function is a function of the form:

f (x) = ax + b (28)

wherex 2 R, the domain for linear functions are the whole ofR and the range
is also the whole ofR. The linear function can be expressed as a graph, and
the equation for the graph is written is the form:

y = mx + c (29)

The numbersm and c have geometrical meaning which we will come to later.
Linear functions are known aslines, the graph of a typical linear function(or
line) is given by:

-1 -0.5 0 0.5 1 1.5 2 2.5 3
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0
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7

x

y
=

f
(x

)

Figure 12: A Typical Linear Function

To understand the geometrical meaning ofc, we ask when will the line inter-
sect with the y-axis? When the curve intersects they-axis the x co-ordinate
will be zero. So they value is:

y = m � 0 + c = c

So the point at which the line will intersect will be c, so this gives the
geometrical meaning of the numberc, it is the value of y when the line
intersects they-axis. The other way to describe a line is the measure of how
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Figure 13: The Gradient

steep it is, this is called thegradient.
The gradient is de�ned as the following:

gradient =
y2 � y1

x2 � x1
(30)

Let us compute the gradient of our liney = mx + c between two points
(x1; y1) and (x2; y2), the gradient will be:

gradient =
y2 � y1

x2 � x1

=
mx2 + c � (mx1 + c)

x2 � x1

=
mx2 � mx1

x2 � x1

= m
x2 � x1

x2 � x1
= m

So we see that any line in the plane can be completely speci�ed by giving the
point at which it intercepts the y-axis and the gradient. Lines which have
the same gradient are calledparallel.
The sign of the gradient is an important part for determining the waythe
line slopes. If the gradient is positive then the line will look like �gure 13
If the gradient is negative then the line will look like �gure 14.
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Figure 14: The Negative Gradient

3.1.1 De�ning a Line From Two Points

There is a unique line that passes through any two given points in the plane
and given these two points it is possible to construct the line passing through.
As mentioned before there are two pieces of information that are required to
completely de�ne the line, the gradient and they intercept. Let's write the
the equation of the line as:

y = mx + c (31)

The two points in question are (x1; y1) and (x2; y2), the gradient, m of the
line will be given by:

m =
y2 � y1

x2 � x1
(32)

So we can write:
y =

y2 � y1

x2 � x1
x + c (33)

To �nd c, evaluate (33) at (x1; y1), so

y1 =
y2 � y1

x2 � x1
x1 + c (34)

Hence
c = y1 �

y2 � y1

x2 � x1
x1 (35)

So the equation for the line is given by:

y � y1 =
y2 � y1

x2 � x1
(x � x1) (36)
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3.1.2 The Normal of a Line

The normal of a line y = mx + c is a line which is perpendicular to the
original line.
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Figure 15: The Normal

Let the gradient of the normal ben, then the following holds:

mn = � 1 (37)

3.2 Intersection of Lines

A natural question to ask is if we have two lines de�ned by:

ay + bx = c (38)

dy + ex = f (39)

then where would they intersect (if at all)? At the point of intersection the
values forx and y will be the same, so we can equate the values ofx or y.
Example . Find the intersection of the lines 2y + x = 3 and � y + 2x = 2.
As stated before, the values of thex and y will be the same, To do this write
both curves asy = mx + c:

y = �
x
2

+
3
2

y = 2x � 2

At the point of intersection, the y values will be the same so we can set:

�
x
2

+
3
2

= 2x � 2
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We can then re-arrange to �ndx.

5x
2

=
7
2

So the x co-ordinate of the intersection is given byx = 7=5. To �nd the
y co-ordinate substitute the value forx into either of the equations for the
lines:

y = 2
7
5

� 2 =
14
5

�
10
5

=
14� 10

5
=

4
5

So the point of intersection of the two lines is the point (75; 4
5)
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Figure 16: Intersection of Lines

3.3 Shortest Distance from a Point to a Line

We have considered the distance between two points, now let us consider the
distance between a point and a line. There is an in�nite number of points
on the line which we may choose in computing the distance.
The line `1 from the point (a; b) represents a typical line from (a; b), these
lines are an arbitrary distance away from the lineL. It only makes sense
therefore to talk about the line which gives theshortest distance from the
line. This will be the normal line from (a; b)8 to L.
Example . Find the shortest distance from the point (2; 2) to the line y+ x =

8This is geometrically obvious from �gure 17 but we will prove that it is ind eed the
normal line which gives the shortest distance
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Figure 17: Distance from a Point to a Line

1. First of all, get the equation of the line in the formy = mx + c, so upon
rearranging the equation of the line becomes:

y = � x + 1

The gradient of the normal satis�esnm = � 1, so:

� n = � 1

and so the gradient of the normal,n is n = 1. The next task is to obtain the
equation of the normal toy + x = 1, we already know the gradient, so we
can write:

y = x + c

We know a point on the line, (2; 2), so we can use this to �nd out the value
of c.

2 = 2 + c

giving the y intercept, c to be c = 0, so the equation of the normal is given
by y = x. In order to calculate the shortest distance from the point to the
line, we need to know the point on the lineL which the normal of L will
intersect. As before the values ofx and y will be the same for both curves
and they satisfy:

y = � x + 1

y = x

To �nd the point of intersection we equate they values to �nd that:

� x + 1 = x ) 2x = 1 ) x =
1
2
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Inserting this value into any of equations of the lines shows thaty = 1=2 is
the y value of the intersection, so the point of intersection is (1=2; 1=2). The
�nal task is to compute the distance between the two points which iscarried
out using Pythagoras' theorem:

distance =

r �
2 �

1
2

� 2
+

�
2 �

1
2

� 2
=

r
9
4

+
9
4

=
3

p
2

So �nally the shortest distance between the point (2; 2) and the line y =
� x + 1 is 3=

p
2.
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Figure 18: Distance from a Point to a Line
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4 Quadratic Equations

4.1 Introduction

A quadratic equation is a function of the form:

f (x) = ax2 + bx + c a 6= 0 (40)

Where x 2 R is the domain anda; b; c2 R
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Figure 19: Examples of Quadratic Equations

Some examples of quadratic equations:

f (x) = x2

f (x) = x2 + 2x � 3

f (x) = � 2x2 + 4

4.2 Factorisation of Quadratic Equations

4.2.1 Case Where f (x) = x2 + bx + c

Remember that quadratic equations can by split up into the product9 of
linear functions10. A linear function is a function of the form:

f (x) = ax + b (41)

9This means that they're multiplied together
10More on this later
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All the linear functions in this section will be of the formf (x) = x + a or
f (x) = x � a. We claim that we can write the quadratic in the form11:

f (x) = ( x + � )(x + � ) (42)

So we must have that:

x2 + ax + b = ( x + � )(x + � )

= x(x + � ) + � (x + � )

= x2 + x� + �x + ��

= x2 + �x + �x + ��

= x2 + ( � + � )x + ��

Comparing the coe�cients, we see that in order to write the quadratic equa-
tion in the form (42) then we must look for numbers�; � which satisfy:

a = � + �

b = ��

Example . Factor the quadratic equation f (x) = x2 + 3x + 2 into linear
factors. The working that we have done tells us that we can write

x2 + 3x + 2 = ( x + � )(x + � )

Where � and � satisfy:

3 = � + �

2 = ��

Now the only factors that 2 has are 1 and 2, as 2 = 2�1, but note that 1+2 = 3.
So if we choose� = 1 and � = 2 12, this completes the Factorisation. As a
check, we multiply out the brackets:

(x + 1)( x + 2) = x(x + 2) + 1( x + 2)

= x2 + 2x + 1 � x + 2

= x2 + 3x + 2

So we do indeed get back the quadratic equation we started with.
Example . Factor f (x) = x2 � 5x + 6. We are looking for� and � such that:

� 5 = � + �

6 = ��

There are a number of ways that 6 can be factored:
11 � and � are related to the roots of f (x)
12We could have alternatively chosen� = 2 and � = 1, this would not have changed

anything.
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factor 1 factor 2 � + � ��
� 1 � 6 � 7 6
� 1 6 5 � 6
� 2 � 3 � 5 6
3 � 2 1 � 6

From the above choices, we simply pick the two factors which give there-
quired coe�cients which are � = � 2 and � = � 3. As a check we shall
multiply it out.

(x � 2)(x � 3) = x(x � 3) � 2(x � 3)

= x2 � 3x + x � 2x + 6

= x2 � 5x + 6

So the factorisation worked.

4.3 Case Where a 6= 1

This section deals with the factorisation of general quadratic equations. The
linear factors involved will be of the form:

f (x) = px + � (43)

So we look for a factorisation off (x) = ax2 + bx + c in the following way:

ax2 + bx + c = ( px + � )(qx + � )

= px(qx + � ) + � (qx + � )

= pqx2 + p�x + q�x + ��

= pqx2 + ( q� + p� )x + ��

So we have to �nd numbersp; q; �; � which satisfy the following:

a = pq

b = q� + p�

c = ��

An example will make things clear.
Example . Factor f (x) = 6 x2 + x � 2. As before we look for linear factors
of the form px + q, now from previous working we need to �nd four numbers
p; q; �; � such that:

6 = pq (44)

1 = q� + p� (45)

� 2 = �� (46)
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We shall look for the values ofp and q �rst. The number 6 has 2 di�erent
sets of factors, 6 = 1� 6 = 2 � 3. Try p = 1 and q = 6 as possible guesses,
inserting these values into (45) and (46) shows that� and � satisfy:

1 = � + 6�

� 2 = ��

There are no solutions (with integer coe�cients) of the above solutions, so
we were wrong in our choice ofp and q, so try p = 2 and q = 3, inserting
these into (45) and (46) shows that� and � satisfy:

1 = 3� + 2�

� 2 = ��

Now � 2 = 1 � (� 2) = ( � 1)� 2 are possible factorisations. One solution we can
rule out is � = 1 and � = � 2 because 3� +2� = 3 �(� 2)+2 �1 = � 6+2 = � 4.
Likewise � = � 2 and � = 1 isn't a solution as 3� + 2� = 3 � 4 = � 1, so the
only solution we are left with is� = � 1 and � = 2 as 3� + 2� = � 3 + 4 = 1.
So the factorisation is (�nally!):

f (x) = (2 x � 1)(3x + 2) (47)

Checking this shows:

(2x � 1)(3x + 2) = 2 x(3x + 2) � (3x + 2)

= 6x2 + 4x � 3x � 2

= 6x2 + x � 2

4.4 Completing the Square

There is an alternative way of writing the quadratic equationf (x) = ax2 +
bx + c and that is the form:

ax2 + bx + c = a[(x � � )2 + � ] (48)

Note for future reference:

(x + a)2 = x2 + 2ax + a2

(x � a)2 = x2 � 2ax + a2

29



4.4.1 Case Where f (x) = x2 + bx + c

An example with f (x) = x2 + 2x + 3 will give an idea of how this works. We
compare the quadratic equation with (x + a)2 + b Now:

x2 + 2x + 3 = ( x + a)2 + b

= x2 + 2ax + a2 + b

So we can equate coe�cients to obtain:

2 = 2a

3 = a2 + b

So, a = 1 from the �rst of these equations and 3 = 12 + b, so b = 2 and the
quadratic equation is written as:

x2 + 2x + 3 = ( x + 1) 2 + 2 (49)

What about the general case? We want to write:

x2 + bx + c = ( x + p)2 + q (50)

Then as before we write:

x2 + bx + c = ( x + p)2 + q

= x2 + 2px + p2 + q

So we can equate coe�cients to obtain:

b = 2p

c = p2 + q

The �rst of these equations shows that:

p =
b
2

(51)

Inserting this into the second equation shows that:

c =
�

b
2

� 2

+ q =
b2

22
+ q =

b2

4
+ q (52)

So

q = �
�

b2

4
� c

�
= �

b2 � 4c
4

(53)
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So the squared form of the quadraticf (x) = x2 + bx + c is:

x2 + bx + c =
�

x +
b
2

� 2

�
b2 � 4c

4
(54)

As a check we shall multiply it out:

�
x +

b
2

� 2

�
b2 � 4c

4
=

�
x +

b
2

��
x +

b
2

�
�

b2 � 4c
4

= x
�

x +
b
2

�
+

b
2

�
x +

b
2

�
�

b2 � 4c
4

= x2 +
b
2

x +
b
2

x +
b2

4
�

b2

4
+ c

= x2 + bx + c

So it is in squared form.

4.4.2 Case Where a 6= 0

The way forward in this case is very simple when completing the squarefor
f (x) = ax2 + bx + c, we simply write:

ax2 + bx + c = a
�

x2 +
b
a

x +
c
a

�
= ag(x) (55)

So we're reduced to answering the previous question with the casea = 1.
Example . Complete the square for the quadraticf (x) = 3 x2 � 2x + 1. So
we do as suggested, write the quadratic as:

3x2 � 2x + 1 = 3
�

x2 �
2
3

x +
1
3

�
(56)

So now we are left for the task of completing the square forg(x) = x2 �
2x=3 + 1=3, write:

x2 � 2x=3 + 1=3 = ( x � p)2 + q

= x2 � 2px + p2 + q

So we are left to examine:

�
2
3

= � 2p

1
3

= p2 + q
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So, from the �rst of these equations shows thatp = 1=3, inserting this into
the second equation shows that:

1
3

=
� 1

3

� 2
+ q =

1
9

+ q

Which shows that q = 2=9 and the quadratic can be written as:

3x2 � 2x + 1 = 3
� �

x �
1
3

� 2
+

2
9

�
(57)

Example . Complete the square off (x) = ax2 + bx + c. We do as before
and take out the factor ofa to get:

ax2 + bx + c = a
�

x2 +
b
a

x +
c
a

�
= ag(x) (58)

We want to write g(x) in the following form (x + p)2 + q, so

x2 +
b
a

x +
c
a

= ( x + p)2 + q

= x2 + 2px + p2 + q

So we're left with the two equations:

b
a

= 2p

c
a

= p2 + q

So from the �rst of these we see thatp = b=(2a) and inserting this into the
second equation shows that:

c
a

=
� b

2a

� 2
+ q =

b2

4a2
+ q (59)

and soq is given by:

q = �
b2 � 4ac

4a2
(60)

So the squared form is:

ax2 + bx + c = a
� �

x +
b

2a

� 2
�

b2 � 4ac
4a2

�
(61)
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To see that this is the solution, we'll expand it.

a
� �

x +
b

2a

� 2
�

b2 � 4ac
4a2

�
= a

�
x +

b
2a

� 2

� a
b2 � 4ac

4a2

= a
�

x +
b

2a

��
x +

b
2a

�
�

b2 � 4a
4a

= ax
�

x +
b

2a

�
+ a

b
2a

�
x +

b
2a

�
�

b2 � 4ac
4a

= ax2 +
b
2

x +
b
2

x +
b2

4a
�

b2

4a
+ c

= ax2 + bx + c

4.5 Finding the Maximum and Minimum of a Quadratic
Equation

A minimum of a function f (x) is a number b, such that f (x) > b. There is
always a pointa in the domain of f such that f (a) = b and the condition for
a minimum is written f (x) > f (a) for points in the domain surroundinga.
Likewise amaximum of a function f (x) is a number b, such that f (x) < b.
There is always a pointa in the domain of f such that f (a) = b and the
condition for a minimum is written f (x) < f (a) for points in the domain
surrounding a.
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Figure 20: Examples of Maxima and Minima

The green curve shows a minimum at the pointx = 1, so all the points
around x = 1 satisfy f (1) 6 f (x) for all points in the domain. The red curve

33



shows as maximum at the pointx = 1, and all points satisfy f (1) > f (x) for
all points in the domain.
By completing the square on a quadratic, it is easy to compute what the
minimum and maximum are and where they occur. As an example take
f (x) = x2 � 2x + 3, completing the square for this givesf (x) = ( x � 1)2 + 2,
what is the minimum of this function and where does it happen. Now the
function is made up of something positive (the squared term (x � 1)2 > 0
and something else. By taking away the positive term, we are makingf the
smallest it can be.13, so the minimum value off (x) will be 2. Where does
this happen? It will happen when the positive term is zero, i.e. when:

(x � 1)2 = 0 (62)

and this happens whenx = 1. So the minimum occurs whenx = 1 and the
minimum is 2.
The sign of the coe�cient of the x2 term will determine if there will be a
maximum or minimum. So if f (x) = ax2 + bx + c, then if a > 0, there
will be a minimum and whena < 0 there will be a maximum. We can use
equation which came from completing the square for a general quadratic, if
f (x) = ax2 + bx + c, then:

a
�

> 0z }| {�
x +

b
2a

� 2
�

b2 � 4ac
4a2

�
(63)

So to make the function as small as possible (for positivea) or large as
possible (for negativea), we take away the squared term to �nd the extremum
value, which is

�
b2 � 4ac

4a2
(64)

which happens at the valuex = � b=2a.

4.6 Finding Roots of Quadratic Equations

A root of a function f (x) is a point a in the domain of f such that f (a) = 0.
There are several ways to �nd root for quadratic equations, we have discussed
many such methods earlier on in this chapter. Factorisation is the simplest
method to �nd roots. Note that a quadratic equation has no more than two
roots.

13This will be continued later on in di�erentiation
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Example . Find the roots of f (x) = x2 � x � 2. f (x) has the following
factorisation, f (x) = ( x � 2)(x + 1), the, we observe that:

f (2) = (2 � 2)(2 + 1) = 0 � 3 = 0

f (� 1) = ( � 1 � 2)(� 1 + 1) = � 3 � 0 = 0

So the roots off (x) are x = 2; � 1. In general if a is a root of a function
f (x), then f (x) can be written as

f (x) = ( x � a)g(x) (65)

whereg(x) is another linear factor.
The other method to use is completing the square.
Example . Find the roots of f (x) = x2 � x � 2 by completing the square.
The completed square off (x) is given by:

x2 � x � 2 =
�

x �
1
2

� 2
�

9
4

Setting this expression to zero to �nd the roots, we obtain:
�

x �
1
2

� 2
�

9
4

= 0

,
�

x �
1
2

� 2
=

9
4

, x �
1
2

= �
3
2

two signs from square rooting

, x =
1 � 3

2

So the roots are (once again)x = 2; � 1
The general case . Suppose we want to �nd the roots off (x) = ax2+ bx+ c,
then we use the completed square form of the equation which is:

ax2 + bx + c = a
� �

x +
b

2a

� 2
�

b2 � 4ac
4a2

�

We set this to zero and re-arrange as we did in the previous example:

a
� �

x +
b

2a

� 2
�

b2 � 4ac
4a2

�
= 0

,
�

x +
b

2a

� 2
�

b2 � 4ac
4a2

= 0

,
�

x +
b

2a

� 2
=

b2 � 4ac
4a2
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, x +
b

2a
= �

p
b2 � 4ac

2a

, x =
� b�

p
b2 � 4ac

2a

So the roots off (x) = ax2 + bx + c are given by:

x =
� b�

p
b2 � 4ac

2a
(66)

This is one of the most famous equations in all of mathematics. Note that if:

� b2 � 4ac > 0 then there are two (real) roots to the quadratic.

� b2 � 4ac = 0 then there is only one root to the quadratic.

� b2 � 4ac < 0 then there are no (real) solutions to the quadratic

4.7 Graphing Quadratics

We will want to plot quadratics in the (x; y) plane, to see what they look
like. We have already seen the typical shape of a quadratic earlier onin the
chapter, the shape of a quadratic is called aparabola. We already know that
they either have a maximum or a minimum and we know where these occur
and what they are by looking at the completed square form of the quadratic.

There are some questions that we have to ask regarding when graphing
the quadratic y = ax2 + bc+ c:

1. Does the parabola have a maximum or a minimum? This can be an-
swered by examining the sign ofa

2. Does the parabola cross thex-axis? If so where?

3. Where does the parabola cross they-axis?

4. Where does the extremum value occur?

5. What is the extremum value?

Once we have answered the above questions then we can draw an accurate
picture of the parabola. We shall answer these questions one by one by an
example.
Example . Plot the graph y = x2 � x � 2. We answer the questions one by
one.
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1. From the general equation, we havea = 1; b = � 1 and c = � 2, so
a > 0 so the parabola will have a minimum.

2. The parabola will cross thex-axis when y = 0 and so we solve the
equation x2 � x � 2 = 0, so this is the same as �nding the roots
of the equation and gives the meaning of what roots are, it occurs
when the graph crosses thex-axis. We can �nd this three di�erent
ways: factorising the quadratic, completing the square and plugging
the numbers into the formula for the roots (66). We choose the last
option with a = 1; b= � 1 and c = � 2, so using (66) we proceed.

x =
� b�

p
b2 � 4ac

2a

=
� (� 1) �

p
(� 1)2 � 4 � 1 � (� 2)

2 � 1

=
1 �

p
1 + 8

2

=
1 �

p
9

2

=
1 � 3

2
= � 1; 2

So the parabola crosses thex-axis at the points x = � 1 and x = 2.

3. The parabola will cross they-axis whenx = 0, so to �nd this point
just plug x = 0 into the equation y = x2 � x � 2 to �nd:

y = 0 2 � 0 � 2 = � 2 (67)

So the parabola will cross they-axis at y = � 2.

4. In order to �nd where the extremum value occurs (in this case a mini-
mum) we complete the square of the quadratic:

y = x2 � x � 2 =

> 0z }| {�
x �

1
2

� 2
�

9
4

The minimum will occur when the quantity in brackets is zeros, i.e.
when:

x �
1
2

= 0

Or when x = 1=2.
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5. Examining the completed square form atx = 1=2 will give us the value
of the minimum. So

y =
�

x �
1
2

� 2
�

9
4

=
� 1

2
�

1
2

� 2
�

9
4

= 0 2 �
9
4

= �
9
4

So the minimum isy = � 9=4.

This gives us all the information we need to plot the graph ofy = x2 � x � 2
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Figure 21: Graphing of Parabolas

Example . Plot the graph of the function f (x) = 2 x2 + x + 1. We again go
through the checklist in order to get an idea of the function.

1. The sign of thex2 is 2 which is positive so the parabola has a minimum.

2. In order to �nd the points at which the function crosses they-axis in
order to do this we have to solve the equation 2x2 + x + 1 = 0, we do
this by the same method as before, by using equation (66).

x =
� b�

p
b2 � 4ac

2a

=
� 1 �

p
(1)2 � 4 � 2 � 1
2 � 2
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=
� 1 �

p
1 � 8

4

=
� 1 �

p
� 7

4

We can't take the square root of a negative number, so from this we
can conclude that the parabola doesnot cross thex-axis.

3. Where does the quadratic cross they-axis? We setx = 0 in the
quadratic:

y = 2 � 02 + 0 + 1 = 0

So the quadratic crosses they-axis at y = 1.

4. Where does the minimum occur? To �nd this we complete the square
of the quadratic:

2x2 + x + 1 = 2
�
x2 +

x
2

+
1
2

�

= 2
� �

x +
1
4

� 2
�

1
16

+
1
2

�

= 2
� �

x +
1
4

� 2
+

7
16

�

So the completed square form of the equation is:

2x2 + x + 1 = 2
�

> 0z }| {�
x +

1
4

� 2
+

7
16

�

We examine the positive term and see at what point that this will
become zero, this will be whenx + =4 = 0 or when x = � 1=4.

5. What is the minimum? To �nd this set x = � 1=4, inserting this into
the completed squared form of the quadratic shows

Minimum = 2
� �

�
1
4

+
1
4

� 2
+

7
16

�
= 2

� �
0
� 2

+
7
16

�
= 2 �

7
16

=
14
16

=
7
8

So the minimum is 7=8.

So the graph is given by:
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Figure 22: Graphing of Parabolas

4.8 Intersection of Quadratic Equations

So far we have only spoken about one parabola, we now move on to two
parabolas. One of the questions to ask is where do these parabolasintersect?
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Figure 23: Intersection of Parabolas

Suppose we have two quadratics which we write:

f (x) = ax2 + bx + c (68)

g(x) = dx2 + ex + f (69)
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In order to �nd the intersection points write the equations asy = f (x) and
y = g(x), then the points (x; y) will be the same for both equations. So to
�nd the x value at which they intersect we can equate they values, so:

ax2 + bx + c = dx2 + ex + f ) (a � d)x2 + ( b� e)x + c � f = 0 (70)

So to �nd the x points all we have to do is �nd the roots of (a � d)x2 + ( b�
e)x + c � f = 0, and we have techniques to �nd these roots. These will give
no more than two possible points at which the parabolas intersect. To �nd
the y values, we insert thex values which we found earlier into any of the
equations to �nd the values required.
Example . Find the intersection of the following quadraticsf (x) = 2 x2+ x+3
and g(x) = x2 + 4x + 1. Write the quadratics as:

y = 2x2 + x + 3

y = x2 + 4x + 1

The points of intersection can be found by setting they values the same, so:

2x2 + x + 3 = x2 + 4x + 1 ) x2 � 3x + 2 = 0

This can be factorised (we've done this before),

x2 � 3x + 2 = ( x � 1)(x � 2)

So thex values of the points of intersection arex = 1; 2. To �nd the y values,
simply insert these values into either two of the equations.

y = 2 � 12 + 1 � 1 + 3 = 2 + 1 + 3 = 6

So one of the points of the intersection points is (1; 6). To �nd the other
point of intersection:

y = 2 � 22 + 1 � 2 + 3 = 8 + 2 + 3 = 13

So the other point is (2; 13).

4.9 Quadratics in Other Guises

Sometime you come across an equation which looks nothing like a quadratic
but is a quadratic, for example:

f (x) = x4 � 3x2 + 2
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The above equation doesn't look much like a quadratic but if we change
variables fromx to y, so that y = x2, then we can write14:

g(y) = y2 � 3y + 2

and we have a quadratic iny, and we can use all our previous methods to �nd
out information about this equation, for example its roots. The quadratic
in y can be factorised in the following wayg(y) = ( y � 1)(y � 2), then we
see that the roots ofg(y) are y = 1 and y = 2. However we know that
y = x2, so we can write;x2 = 1 and x2 = 2, upon taking square roots we
obtain x = � 1 andx = �

p
2, and we see that there are four solutions to our

original equation.
Example . Find the solutions (if any) to the equation 4x � 2x � 2 = 0. As
we have been talking about quadratic equations, we suspect that this is a
quadratic equation of some form, note that:

4x = (2 2)x = 2 2x = (2 x )2

So this is inserted back into the equation to see:

(2x)2 � 2x � 2 = 0

De�ning a new variable y = 2 x , shows that:

y2 � y � 2 = 0

14Note that g(x2) = f (x)
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This is a quadratic equation, it had a factorisation of the form:

(y � 2)(y + 1) = 0 (71)

So the two solutions arey = 2 and y = � 1. Using the original variable we
have 2x = 2 and 2x = � 1, the second of these has no solution and so we are
left with 2 x = 2, so the solution isx = 1.

4.10 Polynomial Equations

A polynomial is a function of the form:

f (x) = anxn + an� 1xn� 1 + � � � + a1x + a0 (72)

Some examples are:

f (x) = a Zeroth(constant) order polynomial

f (x) = ax + b First(linear) order polynomial

f (x) = ax2 + bx + c Second(quadratic) order polynomial

f (x) = ax3 + bx2 + cx + d Third(cubic) order polynomial

f (x) = ax4 + bx3 + cx2 + dx + e Fourth(quartic) order polynomial

4.10.1 Factorising Polynomials

The main technique used to factor polynomials is to �nd a root of that
polynomial. So letp(x) = anxn + an� 1xn� 1+ � � �+ a1x+ a0 by some polynomial
and let � be a root ofp(x), so that p(� ) = 0, then p(x) has the linear factor
(x � � ) and p(x) can be written in the following way:

p(x) = ( x � � )q(x) (73)

whereq(x) has the form:

q(x) = bn� 1xn� 1 + � � � + b1x + b0 (74)

Example . Take a cubic polynomial,p(x) = ax3 + bx2 + cx+ d with the root
x = � and factorisep(x). If � is a root of p(x) then p(� ) = 0 and therefore
p(x) has the following form:

p(x) = ( x � � )(Ax 2 + Bx + C)
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Expanding the brackets:

p(x) = ( x � � )(Ax 2 + Bx + C)

= x(Ax 2 + Bx + C) � � (Ax 2 + Bx + C)

= Ax 3 + Bx 2 + Cx � �Ax 2 � �Bx � �C

= Ax 3 + ( B � �A )x2 + ( C � �B )x � �C

This is equal top(x) so:

ax3 + bx2 + cx + d = Ax 3 + ( B � �A )x2 + ( C � �B )x � �C

Now we equate the coe�cients because the equations are the same:

a = A

b = B � �A

c = C � �B

d = � �C

Then we can �nd what the values ofA; B and C. which are:

A = a

B = b+ �a

C = c + �b + � 2a

Example . Factoriseh(x) = 2 x3 � 5x2 � 4x + 3 given that a root is x = � 1.
As � 1 is a root then there is a linear factorx � (� 1) = x + 1, so write:

2x3 � 5x2 � 4x + 3 = ( x + 1)( Ax 2 + Bx + C)

Expanding this shows:

2x3 � 5x2 � 4x + 3 = ( x + 1)( Ax 2 + Bx + C)

= x(Ax 2 + Bx + C) + ( Ax 2 + Bx + C)

= Ax 3 + Bx 2 + Cx + Ax 2 + Bx + C

= Ax 3 + ( B + A)x2 + ( C + B) + C

So
2x3 � 5x2 � 4x + 3 = Ax 3 + ( B + A)x2 + ( C + B) + C

As they are the same equation the coe�cients must be the same:

2 = A

� 5 = A + B

� 4 = B + C

3 = C
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The solutions areA = 2; B = � 7 and C = 3. So the �rst factorisation is:

h(x) = ( x + 1)(2 x2 � 7x + 3) = ( x + 1) g(x)

We are left to factorise the following quadratic:

g(x) = 2 x2 � 7x + 3

This can be factorised as followsg(x) = (2 x � 1)(x � 3), and the total
factorisation is given by:

h(x) = ( x + 1)(2 x � 1)(x � 3)

4.11 Odd and Even Functions

An even function satis�esf (� x) = f (x), and odd function satis�es f (� x) =
� f (x). Every function is a sum of an odd function and an even function.
Let f (x) be an arbitrary function, then:

f (x) =

evenz }| {
f (x) + f (� x)

2
+

oddz }| {
f (x) � f (� x)

2
(75)

The functions g(x) = ( f (x) + f (� x))=2 and h(x) = ( f (x) � f (� x))=2. Now
g(x) is even because:

g(� x) =
f (� x) + f (� (� x))

2
=

f (� x) + f (x)
2

=
f (x) + f (� x)

2
= g(x)

Likewise, h(x) is odd because:

h(� x) =
f (� x) � f (� (� x))

2
=

f (� x) � f (x)
2

= �
f (x) � f (� x)

2
= � h(x)

An example of an odd function isf (x) = x3, so

f (� x) = ( � x)3 = ( � 1)3x3 = � x3

An example of an even function isf (x) = x2, as

f (� x) = ( � x)2 = ( � 1)2x2 = x2 = f (x)

Suppose that f (x) is an odd function and g(x) is an even function, then
h(x) = f (x)g(x) is an odd function because:

h(� x) = f (� x)g(� x) = ( � f (x))( g(x)) = � f (x)g(x) = � h(x)

A similar method can be used to show that the product of two odd functions
is an even function and the product of two even functions is an evenfunction.
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4.12 The Equation of a Circle

In this section we will discuss the equation of a circle. Let the centreof
the circle be at (a; b) and have radiusr and let (x; y) be a point on the
circumference.

y

b

a x

r

x � a

y � b

(x; y)

Figure 25: Equation of a Circle

The idea is to use Pythagoras' theorem to compute the required equation.
So from our knowledge of co-ordinate geometry we know how to compute
the distance between two points in the plane, the two points being (a; b) and
(x; y). So we simply write this down:

(x � a)2 + ( y � b)2 = r 2 (76)

This gives us the required equation of the circle.

4.12.1 The General Form of a Circle

Equation (76) is but one form of the equation of a circle, the other is:

x2 + y2 + ax + by+ c = 0 (77)

Provided that:

c �
a2

4
�

b2

4
< 0 (78)
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To pass from (76) to (77), the brackets are expanded and to getfrom (77) to
(76) you would complete the square.
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5 Limits

This chapter will be vital for understanding the concept of di�erential cal-
culus, the notion of a limit is one of the most important concepts in maths.
To give an idea, let's examine the concept of convergence of a sequence.

5.1 Convergence of Sequences

We say a sequencean converges to alimit a if for all " > 0 there exists an
N 2 N such that whenn > N , jan � aj < " . There are several ways to write
this formally, one way is to write an ! a as n ! 1 , or

lim
n!1

an = a (79)

Let's examine the idea with an example. Consider the sequence:

an = 2 +
(� 1)n

n

2 4 6 8 10 12 14 16 18 20
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

n

a n

Figure 26: Convergence of a Sequence

Note that as whenn gets larger the points of the sequence get closer to the
value 2, so that we can guess that the larger the value ofn, the closer still
the points will get to the value 2. In fact, if we choose a speci�c valueof n,
say N1, is it possible to have a \corridor" of width 2"1 around 2 such that
all the points in the sequence lie in that corridor. If we choose a larger value
of n, say N2 > N 1 then we can choose a"2 < " 1 such that all the points of
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Figure 27: Convergence of a Sequence

an will all lie in a corridor of width 2"2 around 2.
In this example (�gure 27) here we have chosen"1 = 0:3 which corresponds
to N1 = 5 and "2 = 0:15 which corresponds toN2 = 10. We shall prove
formally that the sequencean = 1=n ! 0 asn ! 1 . Let us �x " and �nd
an N 2 N such that:

1
n

< "

Consider the real number 1=", if we chooseN as 1=" rounded up to the
nearest integer and then add one then:

1
N

< "

So we have found ourN for which all the points are within a corridor of
width 2" centred around 0, so we have shown that 1=n ! 0 asn ! 1 . The
point is that we have shown thisfor every possible" . So that means that
there is always a natural number that the rest of the sequence is iswithin
a small corridor. This result is the building block of all the other results in
this section.

5.1.1 The Algebra of Limits

There are a few rules which make life very easy when calculating the limits
of sequences. Supposean ! a and bn ! b 6= 0 as n ! 1 then the following
is also true:

an + bn ! a + b (80)
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anbn ! ab (81)
an

bn
!

a
b

(82)

Example . What is the limit of the sequence:

an =
n2 + 2n + 4
8n2 + n � �

To start with 15 divide the denominator and numerator byn2 to get:

an =
1 + 2=n + 4=n2

8 + 1=n � �=n 2

De�ne two other sequencesbn and cn by:

bn = 1 + 2 =n + 4=n2

cn = 8 + 1 =n � �=n 2

Now we have shown that 1=n ! 0 asn ! 1 , so by the algebra of limits:

1
n2

=
1
n

�
1
n

! 0 � 0 = 0

So again by the algebra of limits:

bn = 1 + 2 =n + 4=n2 ! 1 + 2 � 0 + 4 � 0 = 1

Likewise forcn :

cn = 8 + 1 =n � �=n 2 ! 8 + 0 � � � 0 = 8

The initial sequencean is given byan = bn=cn , so the limit of an is given by:

an =
bn

cn
!

1
8

5.1.2 The Natural Number, e

The sequence:

an =
�

1 +
1
n

� n

(83)

has a limit which is callede, the natural number. The natural numbere �
2:7183 is a very very important number in maths and it crops up everywhere.

15This will be a standard technique when computing limits
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5.2 The Limits of Functions

The limit of a function, f (x) is similar to the de�nition of a limit of a sequence
but is based around a pointa in the domain of f (x). The formal de�nition
of the limit of f (x) at x = a if for all " > 0 there exists a� > 0 such that if
0 < jx � aj < � then jf (x) � `j < " .

Figure 28: The Limit of a Function

The idea is to examine howf (x) behaves around the pointx = a. Is there
one particular value that the function f (x) homes into a particular value,`
as the value ofx homes intoa16. If this is the case then that value is the
limit. Like the sequence we can ask what values ofx near x will make f (x)
no more than a distance of" away from the value it seems to be homing in
on.
Example . Show that:

lim
x! 1

5x � 3 = 2

In the de�nition we set a = 1, ` = 2 and f (x) = 5 x � 3. So that means we
have to show that for any" chosen there is a� such that j5x � 3 � 2j < " ,
computing this:

j5x � 3 � 2j = j5x � 5j

= 5 jx � 1j

< "
16But is never equal to a
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The task is to �nd the � which satis�es 0< jx � 1j < � . If we choose� = "=5
then the calculation shows that 0< jx � 1j < � which is what we were asked
to prove.

5.2.1 Algebra of Limits

There is a computational trick that will allow us to compute new limits from
old, it's called the algebra of limits. Supposef (x) ! � and g(x) ! � 6= 0
as x ! a then the following hold asx ! a:

f (x) + g(x) ! � + � (84)

f (x)g(x) ! �� (85)
f (x)
g(x)

!
�
�

(86)

5.2.2 Limits as x ! 1

We have spoken a great deal about taking the limit to a �nite point butnot
as the limit x ! 1 , we will de�ne the limit as x ! 1 in the following way,
let y = 1=x, then:

lim
x!1

f (x) = lim
y! 0

f (1=y) (87)

Example . What is the limit of the function as x ! 1 :

f (x) =
x2 + 2x + 4
8x2 + x � �

To start with replace x with 1=y to get:

f (1=y) =
y� 2 + 2y� 1 + 4
8y� 2 + y� 1 � �

Multiply top an bottom by y2 to obtain:

f (1=y) =
1 + 2y + 4y2

8 + y � �y 2

De�ne two other sequencesg(y) and h(y) by:

g(y) = 1 + 2 y + 4y2

h(y) = 8 + y � �y 2

By the algebra of limits:

g(y) = 1 + 2 y + 4y2 ! 1 + 2 � 0 + 4 � 0 = 1
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Likewise forh(y):

h(y) = 8 + y � �y 2 ! 8 + 0 � � � 0 = 8

The initial sequencef (1=y) is given by f (1=y) = g(y)=h(y), so the limit of
f (1=y) is given by:

f (1=y) =
g(y)
h(y)

!
1
8

So:

lim
x!1

x2 + 2x + 4
8x2 + x � �

=
1
8

5.3 Continuity

By now we should be able to realise that there is a di�erence in taking the
limit as x ! a of a function f (x) and evaluating the function at the point
x = a, for example take the function:

f (x) =
�

100 if x = 0
1 if x 6= 0

Since no matter what" > 0 can take jf (x) � 1j = 0 provided x 6= 0, i.e.
0 < jx � 0j < � ) j f (x) � 1j < " for any �; " > 0. However when we evaluate
f (x) at 0, we arrive at the value 100. So we have shown that:

lim
x! 0

f (x) 6= f (0) (88)

The collection of functions for which

lim
x! a

f (x) = f (a) (89)

are calledcontinuous functions. A function is calleddiscontinuous atx = a
if it not continuous at x = a. An easy way of thinking about continuous
function are functions which you can draw without taking your pencil o�
the paper. To give an example of a function limit use the function,f (x) =
5x � 3, we showed that the limit of this function asx ! 1 was 2, now
f (1) = 5 � 1 � 3 = 2, so we have shown that:

lim
x! 1

f (x) = f (1) = 2

So the functionf (x) is continuous at the point x = 1.
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5.4 One-Sided Limits

Rather than taking the limit as x ! a, it may only be possible to take one
sided limits. It is possible to consider the limit asx & a and x % a (�gure
29). From these more general de�nitions of limits, it is possible to seethat
the one sided limits may be di�erent, but if they are the same then we can
say:

lim
x& a

f (x) = lim
x% a

f (x) = lim
x! a

f (x) (90)

Figure 29: One-Sided Limits

The one-sided limits can be de�ned as:

lim
x& a

f (x) = lim
� ! 0

f (a + � ); lim
x% a

f (x) = lim
� ! 0

f (a � � ) (91)

Continuity can also be de�ned by one-sided limits. A function is continuous
at x = a if the following is true:

lim
x& a

f (x) = lim
x% a

f (x) = f (a) (92)

Example . Find the limit of f (x) at x = 2 from the de�nition of one-sided
and comment on the continuity atx = 2. The function f (x) is de�ned as:

f (x) =
�

x2 � x + 2 x 6 2
2x � 1 x > 2
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Figure 30: Graph off (x)

Start by computing the one-sided limits, �rst the lower limit:

lim
x% 2

f (x) = lim
� ! 0

f (2 � � )

= lim
� ! 0

(2 � � )2 � (2 � � ) + 2

= lim
� ! 0

4 � 4� + � 2 � 2 + � + 2

= 4

The upper limit is:

lim
x& 2

f (x) = lim
� ! 0

f (2 + � )

= lim
� ! 0

2(2 + � ) � 1

= lim
� ! 0

4 + 2� � 1

= 3

So we see that:
lim
x% 2

f (x) 6= lim
x& 2

f (x) = f (2) = 4

So there is no well de�ned limit asx ! 2 of this function and as such this
function is discontinuous atx = 2.

5.5 Indeterminate Limits

Suppose we are asked to examine the limit asx ! 1 of:

f (x) =
x2 � 1
x3 � 1
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As a �rst attempt we write:

lim
x! 1

x2 � 1
x3 � 1

=
0
0

There seems to be a problem as there are no such number as 0=0. In order
to resolve this problem we note that it's possible to factorise the numerator
and denominator as:

f (x) =
(x � 1)(x + 1)

(x � 1)(x2 + x + 1)
=

x � 1
x � 1

x + 1
x2 + x + 1

It is possible to cancel a factor ofx � 1 to rewrite f (x) as:

f (x) =
x + 1

x2 + x + 1

So when we compute the limit, we obtain:

lim
x! 1

x2 � 1
x3 � 1

= lim
x! 1

x + 1
x2 + x + 1

=
2
3

This is how such limits are usually treated. There is a general rule for com-
puting the limit of functions which end up in the form 0=0 called L'Hopital's
rule which involves di�erential calculus. We will cover this in the next chap-
ter.
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6 Di�erential Calculus

6.1 The Basics

6.1.1 Tangents

Consider any two points,A and B on any curve: The line joining AB is

�������

��	
��

�
�	�

Figure 31: Arbitrary Curve

called the chord and the straight line that touches the curve at a single
point is called thetangent. One important thing to notice is that as the the
tangent is a straight line. The next task is to try and �nd the the tangent
line at a point A say. If B is another point on the curve, then it is possible to

Figure 32: The Tangent of a curve

approximate the tangent line by the chord joiningB to A. As B moves closer
to A however, the chord becomes a better approximation to the tangent. So
as B gets closer toA, it is possible to say.

lim
B ! A

Chord between A and B = Tangent at A (93)
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Figure 33: Approximations to the Tangent

So now there is a way to compute the tangent lines for any curve we like.
The de�nition can be applied to any particular point on any curve.

6.1.2 Gradients of Curves

Suppose we have a general curve in the plane described asy = f (x), suppose
we want to gain a measure of the steepness of the curve. The current method
we have for doing this is by examining the gradient, however there are several
places that we can apply the de�nition of the gradient:

Figure 34: Computing the gradient ofy = f (x)

All the applications of the de�nition of the gradient give di�erent answers.
The idea for general curves is to use the notion of a tangent that was described
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the previous section. We have to look at the gradient of the tangent line at
a speci�c point a on the curvey = f (x), call this point A = ( a; f (a)). The
way to do this is select another pointB = ( a+ h; f (a+ h)) and compute the
gradient of the chord AB:

gradient =
f (a + h) � f (a)

a + h � a
=

f (a + h) � f (a)
h

(94)

The gradient calculated will be the gradient of the red line in �gure 35:

Figure 35: Computing the gradient ofy = f (x)

As the values ofh get smaller and smaller the red curve will only touch the
original curve at the point x = a, this will be the tangent line. There is a

Figure 36: Description of the Tangent Line

limiting process going on when computing the tangent of the curve atx = a.
The derivative of f (x) at x � a is de�ned to be:

dy
dx

�
�
�
�
x= a

= f 0(a) = lim
h! 0

f (a + h) � f (a)
h

(95)
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The process of �nding the derivative is calleddi�erentiation. As an example
let us compute the tangent line of the curvey = x2 at the point x = 2.

gradiant = lim
h! 0

(2 + h)2 � 22

h

= lim
h! 0

22 + 4h + h2 � 22

h

= lim
h! 0

4h + h2

h
= lim

h! 0
4 + h

= 4
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Figure 37: The Tangent ata = 2

Now let us compute the derivative ofy = x2:

gradiant = lim
h! 0

(a + h)2 � a2

h

= lim
h! 0

a2 + 2ah + h2 � a2

h

= lim
h! 0

2ah + h2

h
= lim

h! 0
2a + h

= 2a
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So we write this asf 0(a) = 2 a. Let's examine the tangent line of the line
y = mx + c at the point x = a, so as before:

gradiant = lim
h! 0

m(a + h) + c � (ma + c)
h

= lim
h! 0

ma + mh + c � ma � c
h

= lim
h! 0

mh
h

= lim
h! 0

m

= m

There is an alternate de�nition of the derivative. If we let x = a + h, then
the de�nition of the derivative becomes:

dy
dx

�
�
�
�
x= a

= f 0(a) = lim
h! 0

f (x) � f (a)
x � a

(96)

We can use this de�nition to compute the the derivative ofy = xn where
n 2 N. In the process of computing the derivative we will have to compute
the limit of:

xn � an

x � a
A simplistic examination of this limit shows that we arrive at 0=0. So
following the rule of the previous chapter we attempt to �nd a factor for
g(x) = xn � an , we note that g(a) = 0 and so x � a must be a factor ofg(x)
and we can writeg(x) = ( x � a)h(x). Write h(x) as:

h(x) = a1xn� 1 + a2xn� 2 + � � � + akxn� k + ak+1 xn� k� 1 + � � � + an� 2x + an� 1

To �nd the coe�cients, we insert h(x) into the de�nition of g(x) and expand:

xn � an = ( x � a)h(x)

= ( x � a)(a1xn� 1 + � � � + akxn� k + ak+1 xn� k� 1 + � � � + an� 1)

= a1xn + � � � + akxn� k+1 + ak+1 xn� k + � � � + an� 1x �

� aa1xn� 1 + � � � � aakxn� k � aak+1 xn� k� 1 + � � � � aan� 1

= a1xn + � � � + ( ak+1 � aak )xn� k + � � � � aan� 1

Now the xn� k term must vanish, so:

ak+1 � aak = 0 (97)

We also note that
� an = � aan� 1; a1 = 1
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so an� 1 = an� 1. Using k + 1 = n � 1 in (97) shows thatan� 1 = aan� 2 or
an� 2 = an� 2, from this we can calculate all the coe�cients of the series and
see that:

h(x) = xn� 1 + axn� 2 + � � � + an� 2x + an� 1

We can now formally compute the derivative ofy = xn at x = a.

dy
dx

�
�
�
�
x= a

= lim
x! a

xn � an

x � a

= lim
x! a

xn� 1 + axn� 2 + � � � + an� 2x + an� 1

=

n timesz }| {
an� 1 + � � � + an� 1

= nan� 1

So:
dy
dx

�
�
�
�
x= a

= nan� 1 (98)

Equation (98) also works for non-integer powers. Considery = x1=2, then:

dy
dx

�
�
�
�
x= a

= lim
x! a

x
1
2 � a

1
2

x � a

= lim
x! a

x
1
2 � a

1
2

(
p

x +
p

a)(
p

x �
p

a)

= lim
x! a

1
p

x +
p

a

=
1
2

x � 1
2

Which corresponds to our formula whenn = 1=2.

6.2 Higher Derivatives

Di�erentiation is a process which is applied to a function. It can be applied
to a function more than once. The normal notation for a derivativeis:

df
dx

�
�
�
�
x= a

= f 0(a)

This process may be applied tof (x) more than once. So for example

lim
h! 0

df
dx jx= a+ h � df

dx jx= a

h
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is called thesecondderivative and it written:

d2f
dx2

�
�
�
�
x= a

; f 00(a)

This process can be carried out any number of times, so we can writedown
for example:

d56f
dx56

�
�
�
�
x= a

; f (56) (a)

If for example y = xp, then:

df
dx

= pxp� 1;
d2f
dx2

= p(p � 1)xp� 2;
d3f
dx3

= p(p � 1)(p � 2)xp� 2

6.3 Sums, Product, Quotient and Chain Rules

6.3.1 Derivative of a Sum

Suppose thatf (x) has the formf (x) = au(x) + bv(x) then can we write the
derivative of f (x) in terms of u0(x) and v0(x), computing the product:

f 0(x) = lim
h! 0

au(x + h) + bv(x + h) � au(x) + bv(x)
h

= lim
h! 0

a(u(x + h) � u(x)) + b(v(x + h) � v(x))
h

= lim
h! 0

a
u(x + h) � u(x)

h
+ b

v(x + h) � v(x)
h

= a lim
h! 0

u(x + h) � u(x)
h

+ blim
h! 0

v(x + h) � v(x)
h

= au0(x) + bv0(x)

So:
f 0(x) = au0(x) + bv0(x) (99)

6.3.2 Product Rule

Let u(x) and v(x) be two functions and let f (x) = u(x)v(x). Is there a
simple rule for calculating the derivative off (x) in terms of u(x) and v(x).
Let's insert f (x) into the de�nition of the derivative:

df
dx

�
�
�
�
x= a

= lim
h! 0

f (a + h) � f (a)
h
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= lim
h! 0

u(a + h)v(a + h) � u(a)v(a)
h

= lim
h! 0

u(a + h)v(a + h) � u(a)v(a + h) + u(a)v(a + h) � u(a)v(a)
h

= lim
h! 0

u(a + h) � u(a)
h

v(a + h) +
v(a + h) � v(a)

h
u(a)

= lim
h! 0

u(a + h) � u(a)
h

v(a + h) + lim
h! 0

v(a + h) � v(a)
h

u(a)

= v(a)
dh
dx

�
�
�
�
x= a

+ u(a)
dv
dx

�
�
�
�
x= a

So theproduct rule is:

df
dx

�
�
�
�
x= a

= v(a)
du
dx

�
�
�
�
x= a

+ u(a)
dv
dx

�
�
�
�
x= a

(100)

Take as a simple examplef (x) = x3, write u(x) = x and v(x) = x2, so
f (x) = u(x)v(x). Computing the derivative:

df
dx

�
�
�
�
x= a

=
d
dx

(uv)

�
�
�
�
x= a

= v(a)
du
dx

�
�
�
�
x= a

+ u(a)
dv
dx

�
�
�
�
x= a

By the product rule

= a2 � 1 + a � (2a)

= a2 + 2a2

= 3a2

6.3.3 Quotient Rule

Let u(x) and v(x) be two functions and let f (x) = u(x)=v(x). Is there a
simple rule for calculating the derivative off (x) in terms of u(x) and v(x).
Let's insert f (x) into the de�nition of the derivative:

df
dx

�
�
�
�
x= a

= lim
h! 0

f (a + h) � f (a)
h

= lim
h! 0

u(a+ h)
v(a+ h) � u(a)

v(a)

h

= lim
h! 0

v(a)u(a + h) � u(a)v(a + h)
hv(a)v(a + h)

= lim
h! 0

v(a)u(a + h) � u(a)v(a) + u(a)v(a) � u(a)v(a + h)
hv(a)v(a + h)

64



= lim
h! 0

v(a)
v(a)v(a + h)

u(a + h) � u(a)
h

�
u(a)

v(a)v(a + h)
v(a + h) � v(a)

h

= lim
h! 0

v(a)
v(a)v(a + h)

u(a + h) � u(a)
h

� lim
h! 0

u(a)
v(a)v(a + h)

v(a + h) � v(a)
h

=
v(a) du

dx

�
�
�
x= a

� u(a) dv
dx

�
�
�
x= a

v(a)2

So the quotient rule is:

df
dx

�
�
�
�
x= a

=
v(a) du

dx

�
�
�
x= a

� u(a) dv
dx

�
�
�
x= a

v(a)2
(101)

To give a simple example, compute the derivative off (x) = x=(x � 1), use
u(x) = x and v(x) = x � 1, then:

df
dx

�
�
�
�
x= a

=
d

dx
(u=v)

�
�
�
�
x= a

=
v(a) du

dx

�
�
�
x= a

� u(a) dv
dx

�
�
�
x= a

v(a)2
By the quotient rule

=
(a � 1) � 1 � a � 1

(a � 1)2

= �
1

(a � 1)2

6.3.4 The Chain Rule

This concerns the derivative of a function of a function: Iff (x) = u � v(x) =
v(u(x)). The way about computing the derivative is slightly di�erent:

d
dx

u � v(x)
�
�
�
x= a

= lim
x! a

u � v(x) � u � v(a)
x � a

= lim
x! a

v(u(x)) � v(u(a))
x � a

= lim
x! a

v(u(x)) � v(u(a))
u(x) � u(a)

u(x) � u(a)
x � a

= lim
x! a

v(u(x)) � v(u(a))
u(x) � u(a)

lim
x! a

u(x) � u(a)
x � a

= lim
g(x)! g(a)

v(u(x)) � v(u(a))
u(x) � u(a)

lim
x! a

u(x) � u(a)
x � a

=
dv
du

�
�
�
�
u(x)= u(a)

du
dx

�
�
�
�
x= a
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So the rule is:
d

dx

�
�
�
�
x= a

u � v =
dv
du

�
�
�
�
u(x)= u(a)

du
dx

�
�
�
�
x= a

(102)

Take u(x) = 1 + x and v(x) = xn , we will calculate the derivative off (x) =
u � v(x) = v(u(x)) = (1 + x)n . Now:

dv
du

�
�
�
�
u(x)= u(a)

= nu(a)n� 1

And �nally computing du=dx yields:

du
dx

�
�
�
�
x= a

= 1

then u � v0(a) is:
u � v0(a) = n(1 + x)n� 1

6.4 L'Hopitals Rule

When examining limits we were left with one case when we arrived at the
result:

0
0

For example when examining the limit:

lim
x! 1

x2 � 1
x3 � 1

We are looking at the limits for functions:

f (x) =
u(x)
v(x)

to x = a whereu(a) = v(a) = 0, then when we compute the limit asx ! a
we obtain the result 0=0. Let us examine this limit in more detail armed
with our knowledge of di�erentiation.

lim
x! a

f (x) = lim
x! a

u(x)
v(x)

= lim
x! a

u(x) � u(a)
v(x) � v(a)

as g(a) = h(a) = 0

= lim
x! a

u(x) � u(a)
v(x) � v(a)

x � a
x � a
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= lim
x! a

�
u(x) � u(a)

x � a

��
v(x) � v(a)

x � a

� � 1

=
�

lim
x! a

u(x) � u(a)
x � a

��
lim
x! a

v(x) � v(a)
x � a

� � 1

=
u0(a)
v0(a)

So when we compute a limit and we arrive at 0=0 we can just apply L'Hopital's
rule to get a well de�ned limit. Let us see how this works with our example:
f (x) = ( x2 � 1)=(x3 � 1) asx ! 1, doing the limit in the normal way shows
that the limit is 0 =0. Let:

g(x) = x2 � 1; h(x) = x3 � 1; f (x) =
g(x)
h(x)

So we apply L'Hopital's rule:

g0(x) = 2 x; h0(x) = 3 x2

So the limit becomes:

lim
x! 1

x2 � 1
x3 � 1

= lim
x! 1

2x
3x2

=
2
3

Which corresponds to the value obtained earlier.

6.5 dx=dy = 1=dy=dx

A common result in calculus is the fact that:

dx
dy

�
�
�
�
f (x)= f (a)

=
1

dy
dx

�
�
�
�
x= a

(103)

To see lety = f (x), then assuming that the inverse existsx = f � 1(y), write:

dy
dx

= f 0(x);
dx
dy

= ( f � 1(x))0: (104)

Now examine the equation:

y = f � 1 � f (y) (105)

Di�erentiating this equation w.r.t. y using the chain rule shows that:

f 0(f � 1(y))( f � 1(y))0 = 1 (106)
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However, usingf � 1(y) = x shows that:

f 0(x)( f � 1(y))0 = 1 (107)

Which then reduces to:
dy
dx

�
�
�
�
x= a

dx
dy

�
�
�
�
f (x)= f (a)

: (108)

This is the equation we were asked to show.

6.6 Maclaurin Series

Functions are generally quite di�cult to deal with. It is possible to turn
these functions into a �nite or in�nite sum of powers ofx. An example or
two will make this clear. It is possible to write (1 +x)n as a �nite series in
x in the following way: Write

(1 + x)n = a0 + a1x + a2x2 + a3x3 + � � � + anxn

To �nd a0, set x = 0 to �nd that:

(1 + 0) n = a0 + a1 � 0 + � � �

which shows thata0 = 1, so:

(1 + x)n = 1 + a1x + a2x2 + a3x3 + � � � + anxn (109)

To �nd a1 we di�erentiate both sides of (109) to �nd:

n(1 + x)n� 1 = a1 + 2a2x + � � � (110)

To �nd a1, set x = 0 to �nd that:

n(1 + 0) n� 1 = n = a1 + 2a2 � 0 + � � �

so a1 = n. To �nd a2 di�erentiate (110) to �nding

n(n � 1)(1 + x)n� 2 = 2a2 + 6a3x + � � � (111)

Set x = 0 in (111) to obtain:

n(n � 1)(1 + 0) n� 2 = n(n � 1) = 2a2

So a2 = n(n � 1)=2. We can continue this process of di�erentiation and
setting x = 0 to �nd all the ak . Let's examine the formulae for a general
function f (x), so we write:

f (x) = a0 + a1x + a2x2 + a3x3 + � � � + akxk + � � � (112)
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As before, to �nd a0, we setx = 0 in (112) to �nd that f (0) = a0, so we
write:

f (x) = f (0) + a1x + a2x2 + a3x3 + � � � + akxk + � � � (113)

To �nd a1, di�erentiate (113) to obtain:

f 0(x) = a1 + 2a2x + 3a3x2 + � � � + kakxk� 1 + � � � (114)

To �nd a1, set x = 0 in (114) to obtain f 0(0) = a1, so f (x) becomes:

f (x) = f (0) + f 0(0)x + a2x2 + a3x3 + � � � + akxk + � � � (115)

To �nd a2, di�erentiate (114) to obtain:

f 00(x) = 2 a2 + 6a3x + � � � + k(k � 1)akxk� 2 + � � � (116)

setx = 0 in (116) to obtain f 00(0) = 2 a2, or a2 = f 00(0)=2, then f (x) becomes:

f (x) = f (0) + f 0(0)x +
f 00(0)

2
x2 + a3x3 + � � � + akxk + � � �

To �nd a3 di�erentiate (116) to �nd:

f 000(x) = 6 a3 + � � � + k(k � 1)(k � 2)akxk� 2 + � � � (117)

Set x = 0 to �nd f 000(0) = 6 a3 or a3 = f 000(0)=6, f (x) becomes:

f (x) = f (0) + f 0(0)x +
f 00(0)

2
x2 +

f 000(0)
6

x3 + � � � + akxk + � � �

Example . Find the �rst three terms of the Maclaurin series off (x) =
1=(1 � x). We write:

1
1 � x

= a0 + a1x + a2x2 + � � �

To �nd a0, set x = 0 to see that a0 = 1, di�erentiating f (x) to obtain:

1
(1 � x)2

= a1 + 2a2x + � � �

Set x = 0 to �nd a1 which is a1 = 1, di�erentiate again to �nd:

2
(1 � x)3

= 2a2 + � � �

Setting x = 0 shows that 2 = 2a2 and soa2 = 1 and f (x) can be expressed
as:

1
1 � x

= 1 + x + x2 + � � �

69



6.7 Stationary Points & Extrema

A stationary point of a function f (x) is a point where f 0(a) = 0. To �nd
out what this means geometrically we have to examine the tangent lines. To
recall, the tangent line at the point x = a is the straight line with gradient
f 0(a) going through the point (a; f (a)). To construct the tangent line, write
it as y = mx + c, the gradient of the line will be f 0(a), so m = f 0(a), to
compute c, we know that the line passes through (a; f (a)), so

f (a) = f 0(a)a + c

so c = f (a) � af 0(a) and we can write the tangent line as:

y � f (a) = f 0(a)(x � a) (118)

Now suppose thata is a stationary point, that is f 0(a) = 0, then the tangent
line to that point has the form:

y = f (a)

This is just a horizontal line, so locally the function must a minimum, a
maximum or a point of in
exion.

Figure 38: Stationary Points

Point A is a local maximum, point B is a local minimum and point C is a
point of in
ection.
Example . Find the stationary points of f (x) = 2 x2 � 3x + 1, di�erentiating
shows thatf 0(x) = 4 x � 3. for the stationary point, f 0(x) = 0, hence 4x � 3 =
0 and hencex = 3=4, we do not yet know if this is a maximum/minimum or
point of in
exion. Inserting this into f (x), shows that:

f
� 3

4

�
= 2

� 3
4

� 2
� 3

3
4

+ 1 =
9
8

�
9
4

+ 1 = �
1
8
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6.7.1 Determining the Type of Extrema I

Let us examine the pointsA, B and C in �gure 38 in order. Point A is a
maximum, say atx = a, the points close by tox = a will give valuesless than
f (a), so choose a small number" > 0, and examine the value off (a+ ") and
f (a � " ), then f (a) > f (a + ") and f (a) > f (a � " ). Likewise if we examine
the gradients arounda, then the value before the maximumf 0(x � " ) > 0
and like wisef 0(x + ") < 0.
Likewise examining pointB in �gure 38 which is a minimum and happens at
x = b. We examine the functionf (x) at the point B1 = b� " and B2 = b+ ".
If the point b is a minimum, then f (b+ ") > f (b) and f (b� " ) > f (b). We
can also examine the gradients, for a minimum we havef 0(b � " ) < 0 and
f 0(b+ ") > 0.
Concerning the point of in
exion at the point c, then we can tell a point of
in
exion if the following occurs:

f (c � " ) < f (c) < f (c + "); or f (c � " ) > f (c) > f (c + ")

Likewise the gradients should be both either positive or both negative.
Example . Determine the extrema in the previous example. We know the
extrema happened atx = 3=4. so choose" = 0:1 and examine the values of
x = 0:85 and x = 0:65. f (x) = 2 x2 � 3x + 1, then f (0:65) = � 0:105 and
f (0:85) = � 0:105, so from our criterion, both these values are greater than
the extremum value, so the extrema must be a minimum.

6.7.2 Determining the Type of Extrema II

There is an alternative may of determining the type of extrema. Thisis
done from the second derivative. If we recall the geometrical interpretation
of the derivative and that was examining the gradient at a point. So the
second derivative will examine how the gradient changes. For a minimum
the gradient begins as negative and then becomes positive, so the gradient
f 0(x) is a increasing function and so for a minimum atx = a:

d2f
dx2

�
�
�
�
x= a

> 0 (119)

Likewise with a maximum, the gradient begins positive and then after the
maximum the gradient becomes negative, so the gradient is decreasing and
f 0(x) is a decreasing function. So for a maximum, the following is true:

d2f
dx2

�
�
�
�
x= a

< 0 (120)
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returning to our example f (x) = 2 x2 � 3x + 1, the second derivative is
f 00(x) = 4 so at any value will be positive and hence according to our criterion,
the extrema is a minimum.

6.8 Shortest Distance from a Point to a Line

We stated earlier that we would indeed prove that the minimum distance
between a point and a line was to take the normal from the line and we go
about proving that statement using di�erential calculus. We begin by writing

Figure 39: Distance from a Point to a Line

the line asy = mx + c and the point in question asP = ( a; b). The idea of
the proof will be to compute the distance fromP to a general point on the
line and di�erentiate to �nd the minimum and then compute the point on
the line for the minimum and �nally calculate the gradient. Let (x; y) be a
general point on the line, the square of the distance between (a; b) and (x; y)
is given by:

l2
1 = ( y � b)2 + ( x � a)2

But y = mc + c, so:

l2
1(x) = ( mx + c � b)2 + ( x � b)2

We wish to seek to minimisel1, but if we minimise l2
1 then we will have

minimised l1, so di�erentiating the square of the distance:

dl1
dx

= 2m(mx + c � b) + 2( x � a) = 0

72



So we can compute thex co-ordinate where the minimum will occur which
will be at:

xm =
a + mb� mc

1 + m2

The y value of the minimum will be:

ym = mxm + c = m
a + mb� mc

1 + m2
+ c =

ma + m2b+ c
1 + m2

The next (and �nal) task is to calculate the gradient, this is:

gradient =
b� ym

a � xm
=

b� ma � c
m2a � mb+ mc

= �
1
m

Which is the normal to the line L. So the proof is done.
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7 Trigonometry

7.1 Basic Revision

Trigonometry is essentially the study of angles in a triangle.

Figure 40: A Typical Triangle

The most basic fact about angles in a triangle is that the sum of the internal
angles add up to 180� , so � + � + 
 = 180� . However all triangles can be
made up of a special type of triangle called aright angledtriangle

Figure 41: A Right-Angled Triangle

The little square inside the triangle indicates the angle is 90� . All of our
de�nitions in this chapter will use a right-angled triangle. Sidec of the
triangle in �gure 41 is called thehypotenuse. It is well known that given a
right angled triangle: The lengths of the sides are related as

Figure 42: A Right Angled Triangle

a2 + b2 = c2 (121)
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To show this, two squares are constructed out of four of the triangles in the
following manner

Figure 43: The Construction

The area of the inner circle is:

(a � b)2 = a2 + b2 � 2ab (122)

The area of the large square is given byc2.The area of the large square is
made up of the inner square and the area of the four right angled triangles.
As two of the triangles will make up one rectangle with one side of length
a and the other side of lengthb which means that the area of the rectangle
will be ab. So the area of the triangle is

1
2

ab (123)

The area of the large square is given by:

c2 = ( a � b)2 + 4
�

1
2

ab
�

= a2 + b2 � 2ab+
4
2

ab

= a2 + b2 � 2ab+ 2ab

= a2 + b2

So we have proved that:
a2 + b2 = c2 (124)

as required.
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7.2 Radians

There is a natural unit of length when looking at circles, the radius. From
the radius is is also possible to de�ne a natural measurement of angle, this
is called theradian.

Figure 44: The De�nition of the Radian

The de�nition of 1 radian is given that the radius is of length` the arc length
between two di�erent lines drawn from the centre of the circle to the edge
is also of length`. Now suppose we have 2 radians, this will correspond to
an arc-length of 2̀, likewise with 3 radians etc, so in general if we have�
radians then this will correspond to an arc-length ofr� . The circumference
of a circle is 2�` , so suppose that there arex radians in the circle, we have
that:

x` = 2�` ) x = 2�

So there are 2� radians in one circle. To convert from degrees to radians,
note that 2� c = 360� , so:

1� =
� c

180
; 1c =

180�

�
(125)

7.3 Sine, Cosine & Tangent

7.3.1 Geometrical De�nition

Given a right angled triangle (�gure 45), we can de�ne the following17:

sin� =
b
c
; cos� =

a
c

; tan � =
b
a

(126)

All the above are valid for 0< � < �= 2

17An easy way to remember this is the word SOHCAHTOA
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Figure 45: A Right-Angled Triangle

7.3.2 Analytical De�nition

The analytical de�nition of sin � , cos� and tan� are:

sin� = � �
� 3

3!
+

� 5

5!
+ � � � =

1X

n=0

(� 1)n

(2n + 1)!
� 2n+1 (127)

cos� = 1 �
� 2

2!
+

� 4

4!
+ � � � =

1X

n=0

(� 1)n

(2n)!
� 2n (128)

tan � =
sin�
cos�

(129)
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Figure 46: Graphs of sin� and cos�

From the above de�nition it is possible to obtain a great many properties of
the trigonometric functions, moreover they are valid for any angle. The �rst
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two properties that we note straight away is:

sin(� � ) = � sin�; cos(� � ) = cos � (130)

The other properties that we note are the derivatives:

d
d�

(sin � ) = 1 �
� 2

2!
+

� 4

4!
+ � � �

= cos�
d
d�

(cos� ) = � � +
� 3

3!
+ � � �

= � sin�

From the above we can compute what the derivative of tan� using the quo-
tient rule, which will be left as an exercise. There is a particular limit which
is of interest, that is:

lim
x! 0

sinx
x

From our knowledge of sinx and L'Hopital's rule, we know that:

lim
x! 0

sinx
x

= lim
x! 0

cosx
1

=
cos(0)

1
= 1

7.3.3 De�nition of �

The number � is de�ned to be the smallest positive number such that:

cos
�

�
2

�
= 0 (131)

This is the analytical de�nition of � .

7.4 Properties of Trig Functions

7.4.1 Shifting by �
2

The de�nitions of sin � and cos� are very dependent upon the orientation
of the triangle, for example, we can rotate the triangle around anduse the
same de�nitions for the two triangles: Then from �gure 47 we can equate
the following:

a
c

= sin � = cos
� �

2
� �

�
(132)

Likewise
b
c

= cos� = sin
� �

2
� �

�
(133)
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Figure 47: Di�erent Orientations

From the above relations we may compute:

sin
�

�
2

+ �
�

= sin
�

�
2

� (� � )
�

= cos(� � )

= cos�

cos
�

�
2

+ �
�

= cos
�

�
2

� (� � )
�

= sin( � � )

= � sin�

Using the same logic we can show:

sin(� + � ) = � sin�; cos(� + � ) = � cos�

Then �nally:
sin(2� + � ) = sin �; cos(2� + � ) = cos �

So we see that the values for sin� and cos� repeat every 2� radians, they
are said to be2� periodic.

7.4.2 Values at Particular Points

We can calculate certain values of the functions sin� , cos� and tan� . Con-
sider an equilateral triangle with sides of length 1, then all the angleswill be
�= 3 radians.
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Figure 48: Computing Values

The �rst two observations we can write down are:

sin
�
3

=

p
3

2
; cos

�
3

=
1
2

; tan
�
3

=
p

3 (134)

Upon using�= 6 = �= 2 � �= 3, we obtain:

sin
�
6

=
1
2

; cos
�
6

=

p
3

2
; tan

�
6

=
1

p
3

(135)

There is one more angle that we may compute. Consider a square witheach
side length 1 Then we can just write down the values:

Figure 49: Computing Values

sin
�
4

=
1

p
2

; cos
�
4

=
1

p
2

; tan
�
4

= 1 (136)

7.5 Trigonometric Functions at General Points

7.5.1 The Range of sin� and cos�

The range of sin� and cos� go between� 1 which we shall now show. To
�nd the extrema for sin � , we di�erentiate and set the value of the derivative
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to zero:
d
d�

(sin � ) = cos � = 0

So we look for values of� such that cos� = 0. From the de�nition of � , we
know that cos(�= 2) = 0, so one extrema for sin� is at �= 2), so:

sin
�

�
2

�
= cos(0) = 1

However, we also know that cos(� + � ) = � cos(� ), so:

cos
�

� +
�
2

�
= � cos

�
�
2

�
= 0

But

sin
�

� +
�
2

�
= � sin

�
�
2

�
= � 1

So there are two extrema for sin� ,

� 1 6 sin� 6 1

The same is true for cos� by the same reasoning:

� 1 6 cos� 6 1

7.5.2 Trigonometric Functions and the Unit Circle

The values of sin� and cos� can be plotted on the unit circle,x2 + y2 = 1. In
the picture, some common angles, measured in radians, are given. Measure-
ments in the counterclockwise direction are positive angles and measurements
in the clockwise direction are negative angles.
Let a line through the origin, making an angle of� with the positive half of
the x-axis, intersect the unit circle. Thex and y-coordinates of this point of
intersection are equal to cos� and sin� , respectively.
The triangle in the graphic enforces the formula; the radius is equalto the
hypotenuse and has length 1, so we have sin� = y=1 and cos� = x=1. The
unit circle can be thought of as a way of looking at an in�nite number of
triangles by varying the lengths of their legs but keeping the lengthsof their
hypotenuses equal to 1.
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Figure 50: The Circle
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7.6 tan �

Now we have developed sin� and cos� , now we can make some inroads on
tan � , we have de�ned:

tan � =
sin�
cos�

The �rst thing we note is that tan � is odd:

tan(� � ) =
sin(� � )
cos(� � )

= �
sin�
cos�

= � tan �

We can also consider:

tan
�

�
2

� �
�

=
sin(�= 2 � � )
cos(�= 2 � � )

=
cos�
sin�

=
1

tan �

Then with our previous reasoning:

tan
�

�
2

+ �
�

= tan
�

�
2

� (� � )
�

=
1

tan(� � )

= �
1

tan �

We move on to:

tan(� + � ) = tan
�

�
2

+
�

�
2

+ �
��

= �
1

tan(�= 2 + � )
= tan �

So although sin� and cos� are both 2� -periodic, tan� is � -periodic. From
the de�nition of � , we know that:

tan
�

�
2

�
=

sin(�= 2)
cos(�= 2)

=
1
0

So tan(�= 2), does not exist as a real number, this is also the case for
tan(� �= 2) = � tan(�= 2). So there is a discontinuity at � �= 2. However
all other values of tan� exist, so we can get a well-de�ned function for tan� ,
if we restrict � �= 2 < � < �= 2.
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Figure 51: tan�

7.7 Other Trigonometric Functions

There are other functions associated to the trigonometric functions, sin� ,
cos� and tan� . They are the secant,cosecant andcotangent, and they are
de�ned as follows:

cosec� =
1

sin�
(137)

sec� =
1

cos�
(138)

cot � =
1

tan �
=

cos�
sin�

(139)

In many calculations, you would usually convert all the trigonometricfunc-
tions to either sin� or cos� .

7.8 Double Angle Formulae

We have been learning a great deal about cos� and sin� but can we write
sin(A + B) and cos(A + B) in terms of cosA, cosB, sinA and sinB, the
answer is yes. The �rst thing we notice that\ OUT = �= 2 � A, this is the
same as\ RUQ, so this in turn means that \ SRQ = A Hence:

sin(A + B) =
T R
OR

=
T S + SR

OR
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Figure 52: tan�

=
P Q + SR

OR

=
P Q
OQ

OQ
OR

+
SR
QR

QR
OR

= sin A cosB + cosA sinB

So
sin(A + B) = sin A cosB + cosA sinB (140)

Likewise for cos(A + B)

cos(A + B) =
OT
OR

=
OP � T P

OR

=
OP � SQ

OR

=
OP
OQ

OQ
OR

�
SQ
RQ

RQ
OR

= cosA cosB � sinA sinB

So
cos(A + B) = cos A cosB � sinA sinB (141)

From the about we can compute tan(A + B):

tan(A + B) =
sin(A + B)
cos(A + B)
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=
sinA cosB + cosA sinB
cosA cosB � sinA sinB

=
sin A cosB
cosA cosB + cosA sin B

cosA cosB
cosA cosB
cosA cosB � sin A sin B

cosA cosB

=
tan A + tan B

1 � tan A tan B

So:
tan(A + B) =

tan A + tan B
1 � tan A tan B

(142)

By replacingB with � B , formulae for sin(A � B), cos(A � B) and tan(A � B)
may be derived. By putting A = B, can can write the equations for double
angles:

sin 2A = 2 sin A cosA (143)

cos 2A = cos2 A � sin2 A (144)

tan 2A =
2 tanA

1 � tan2 A
(145)

7.9 Inverse Trigonometric Functions

We have states that a function should map to a unique number, this isthe
case for trigonometric functions. However the inverse function which are
de�ned as:

sin� 1(sin � ) = �

If we restrict the domain to:

�
�
2

6 � 6
�
2

(146)

So the sin� has the range� 1 6 sin� 6 1, so the domain of sin� 1 � is between
� 1 and 1.
For cos� 1 � , we restrict the domain of cos� to 0 6 � 6 � , and this will allow
for an inverse.
For tan � , we already have a well de�ned function, so we need not restrict
the domain any further:
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Figure 53: sin�
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Figure 54: sin� 1 �
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Figure 55: cos� 1 �
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7.10 Trigonometric Identities

There are a number of identities that the trigonometric functions satisfy, and
they come straight from the de�nitions:

Figure 57: A Right-Angled Triangle

Given a right angled triangle (�gure 57), The de�nitions are:

sin� =
b
c
; cos� =

a
c

; tan � =
b
a

(147)

So we can write:
b= csin�; a = ccos�

But from Pythagoras' theorema2 + b2 = c2, so:

c2 cos2 � + c2 sin2 � = c2 ) cos2 � + sin2 � = 1

This is valid for all values of � , such equations where the left hand side is
equal to the right hand side regardless of the value of� , such equations are
called identities and we use three lines instead of two:

sin2 � + cos2 � � 1 (148)

There are other forms of this identity, we may divide through by cos2 � to
obtain:

sin2 �
cos2 �

+
cos2 �
cos2 �

�
1

cos2 �
= sec2 �

Which we obtain:
1 + tan 2 � � sec2 � (149)

Likewise we can divide (148) through by sin2 � to obtain:

1 + cot2 � � cosec2 � (150)

Using (148) we can write the equation for cos 2� by using cos2 � = 1 � sin2 �
and sin2 � = 1 � cos2 � as:

cos 2� = 1 � 2 sin2 � = 2 cos2 � � 1 (151)
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7.11 Solving Trigonometric Equations

7.11.1 Equations of the form cos� = a or sin� = a

Suppose we are asked to solve the equation:

sin� =
1
2

(152)

There will be an in�nite number of solutions to this equation, we will we
restrict our interest to 0 6 � 6 3� , plotting the graph y = sin � and y = 1=2
and look at the point where the equations:

y =
1
2

; y = sin �

If we plot these two equations we see that:
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Figure 58: Solutions of sin� = 1=2

There are four solutions to this equation from the graph and we have to �nd
what they are. We know that sin(�= 6) = 1=2 and this will be the basis of
our solution. Let us examine the quantity sin(� � � ):

sin(� � � ) = sin � cos� + cos� sin(� � )

= 0 � 1 � (� sin� )

= sin �

So this means that if sin� = a then sin(� � � ) = a. So we have found
another solution to our equation, the solution is:

� = � �
�
6

=
5�
6

(153)
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As we noted before sin(2� + � ) = sin � , So immediately we can write down
two more solutions to our equations:

�
6

+ 2� =
13�
6

;
5�
3

+ 2� =
17�
6

So the four solution we're looking for are:

�
6

;
5�
6

;
13�
6

;
17�
6

Now let us try another example, what are the solutions to

cos� =
1
2

(154)

Over the range 06 � 6 3�
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Figure 59: Solutions of cos� = 1=2

Our �rst solution is �= 3 from our previous calculations. Now:

cos(2� � � ) = cos 2� cos(� � ) � sin 2� sin(� � )

= cos� + 0 � sin�

= cos�

So as before if�= 3 is a solution to our equation then 2� � �= 3 = 5�= 3 is a
solution. Finally the other solution in the range is 2� + �= 3 = 7�= 3, so the
solutions that we are after are:

�
3

;
5�
3

;
7�
3
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8 Exponential and Logarithms

8.1 Exponential Functions

Previously we de�ned the numbere, which we called the natural number by
the limit:

e = lim
n!1

�
1 +

1
n

� n

(155)

Let's examinee2

e2 = lim
n!1

�
1 +

1
n

� n

� lim
n!1

�
1 +

1
n

� n

= lim
n!1

��
1 +

1
n

� n � 2

= lim
n!1

�
1 +

1
n

� 2n

Now let m = 2n, if n ! 1 then m ! 1 also, hence

e2 = lim
m!1

�
1 +

2
m

� m

Likewise if N is any number, then

eN = lim
n!1

�
1 +

N
n

� n

. We de�ne the exponential function ex in the following way:

ex = lim
n!1

�
1 +

x
n

� n

(156)

We are now in the position to �nd out some of the properties of the expo-
nential function. Let us examine the derivative of the exponentialfunction.
Let h(x) = 1 + x=n and g(x) = xn , then f (x) = h � g(x) = g(h(x)), we use
the chain rule to show that:

h � g0(x) =
dg
dh

�
�
�
�
h(x)= h(a)

dh
dx

�
�
�
�
x= a

= nh(x)n� 1 �
1
n

=
�

1 +
x
n

� n� 1

So:

ex0(x) = lim
n!1

�
1 +

x
n

� n� 1
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= lim
n!1

�
1 +

x
n

� n

=
�

1 +
x
n

�

= lim
n!1

�
1 +

x
n

� n

= lim
n!1

�
1 +

x
n

�

=
ex

1
= ex

So the exponential function is its own derivative, it is unique in this respect,
and is often de�ned as the only function whose derivative it itself. The next
property is to obtain a series expansion forex . To do this we Use Maclaurin's
series. We wish to write:

ex = a0 + a1x + a2x2 + a3x3 + � � � (157)

We tackle this problem much the way before,e0 = 1, so this shows that
a0 = 1. To �nd a1, we di�erentiate, Di�erentiating the right hand side of
(157) shows that

ex = a1 + 2a2x + 3a3x2 + � � � (158)

Setting x = 0 shows that a1 = 1, which shows that:

ex = 1 + x + a2x2 + a3x3 + � � � (159)

To �nd a2, di�erentiate (158) to show that:

ex = 2a2 + 6a3x + � � � (160)

Setting x = 0 shows that a2 = 1=2 and so:

ex = 1 + x +
x2

2
+ a3x3 + � � � (161)

To �nd a3 di�erentiate (160) to obtain:

ex = 6a3 + � � � (162)

Setting x = 0 we �nd that a3 = 1=6 = 1=3!, so:

ex = 1 + x +
x2

2!
+

x3

3!
+ � � � (163)

It quite easy to show that the general term for the exponential isxn=n!, and
the series is:

ex =
1X

n=0

xn

n!
(164)
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Now we can see that all the exponential function really does it take powers
of the numbere, so we can easily see that:

ex > 0 (165)

for all values ofx. As ex > 0, this means also thatex0 > 0, so the gradient
at all points is positive, so this means that ifb > a, then eb > ea, so the
exponential function is increasing. From this we can conclude:

lim
x!1

ex = 1 (166)

lim
x!�1

ex = 0 (167)
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Figure 60: Graph off (x) = ex

There are functions associated to the exponential function:

coshx =
ex + e� x

2
(168)

sinhx =
ex � e� x

2
(169)

We will not look into these functions, but use them as examples. The last
piece of theory on the exponential function is to compute the derivative
of f (x) = eg(x) , this is just a simple application of the chain rule. Write
h(x) = ex , then f (x) = g � h(x) = h(g(x)), then applying the chain rule:

dh
dg

�
�
�
�
g(x)= g(a)

= eg(a) ;
dg
dx

�
�
�
�
x= a

= g0(a)
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Then we can combine the above to show that:

f 0(x) = g0(x)eg(x) (170)

8.2 The Logarithm

The logarithm is de�ned to be the inverse of the exponential function, so:

ln(ex ) = x (171)

eln( x) = x (172)

Both the above are equivalent de�nitions. Lets look at some of the properties
of ln x. One important property is ln 1, now from the second version of
the de�nition eln 1 = 1, but we know from the laws of powers thata0 = 1
regardless of the value ofa, so this means that:

ln 1 = 0 (173)

Let's look at the addition of lnx and lny, then:

eln x+ln y = eln xeln y

= xy

= eln( xy )

So eln x+ln y = eln( xy ) , divide through by eln( xy ) to obtain:

eln x+ln y� ln( xy ) = 1

So lnx + ln y � ln(xy) = 0 which states that:

ln(xy) = ln x + ln y (174)

as ex and lnx are inverses:

xa = eln xa

) x =
�
eln xa

� 1
a

) x = e
1
a ln xa

So:
1
a

ln xa = ln x
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As eln x = x, so:
ln xa = a ln x (175)

The next question to ask is what is the derivative of lnx, from the de�nition
eln x = x we apply the chain rule,h(x) = ex and g(x) = ln x, sox = g� h(x) =
h(g(x)), to use the chain rule:

dh
dg

�
�
�
�
g(x)= g(a)

= eln a = a;
dg
dx

�
�
�
�
x= a

= ln 0(a)

So inserting this into the chain rule:

a ln0(a) = 1

So,

ln0(a) =
1
a

(176)

It is not possible to obtain a series inx for ln x but it is possible to obtain a
series for ln(1 +x), so we assume that:

ln(1 + x) = a0 + a1x + a2x2 + a3x3 + � � � (177)

to �nd a0, set x = 0 to �nd that ln1 = a0, soa0 = 0, to �nd a1, di�erentiate
(177) to obtain:

1
1 + x

= a1 + 2a2x + 3a3x2 + � � � (178)

Set x = 0 to obtain 1 = a1, insert this into (178) to get:

1
1 + x

= 1 + 2 a2x + 3a3x2 + � � � (179)

To �nd a2 di�erentiate (179) to obtain:

�
1

(1 + x)2
= 2a2 + 6a3x + � � � (180)

To �nd a2 insert x = 0 into (180) to obtain a2 = � 1=2. To �nd a3, di�eren-
tiate (180) to obtain:

2
(1 + x)3

= 6a3 + � � � (181)

To �nd a3 insert x = 0 in (181) to �nd that a3 = 1=3 and the series becomes:

ln(1 + x) = x � x2 +
x3

3
+ � � � (182)
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The general term in the series is (� 1)n+1 xn=n and the series is:

ln(1 + x) =
1X

n=1

(� 1)n+1 xn

n
(183)

The last piece of theory is the di�erentiation off (x) = ln g(x), this, like most
things is tackled via the chain rule. leth(x) = ln x, then f (x) = g � h(x) =
h(g(x)), the chain rule states that:

df
dx

=
dh
dg

dg
dx

Where dh=dg= 1=g(x) and dg=dx= g0(x), so:

f 0(x) = g � h0(x) =
g0(x)
g(x)

(184)

The graph of lnx can be obtained from the functionex in the following way:

y = ln x ) ey = eln x = x

So this means that the graph for lnx is the graph fory = ex re
ected about
the line t = x

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

x

ln
x

Figure 61: Graph off (x) = ln x
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8.3 General Exponentials

Let a > 0, then we de�ne the following:

ax = ex ln a (185)

The �rst question to ask is how to di�erentiate this general exponential func-
tion, we shall compute the derivative in two ways. First take the logarithm
of the general exponential equation,

ln y = ln( ax ) = x ln a

Write g(x) = ln x, then ln y = y � g(x) = g(y), then by the chain rule:

dg
dy

=
1
y

;
d

dx
(x ln a) = ln a

Then the chain rule shows that:

1
y

dy
dx

= ln a )
dy
dx

= y ln a = ax ln a

The other way to compute the derivative is to use the de�nition:

d
dx

(ax ) =
d

dx
(ex ln a) = ex ln a ln a = ax ln a

so we get the same results.

8.4 General Logarithms

We de�ned the natural logarithm ln x as the inverse function of the expo-
nential ex , suppose we have an equation:

ax = b (186)

Then we de�ne:
x = loga b (187)

The RHS is pronounced, log to the base a of b. we can relate logb to natural
logarithms, ln in the following way:

ax = b ) ln(ax ) = ln b ) x ln a = ln b ) x =
ln b
ln a

So equating thex in both cases shows that:

loga b=
ln b
ln a

(188)
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With this it can be veri�ed that the properties for loga are the same for ln

loga bx = x loga b (189)

loga(bc) = log a b+ loga c (190)

loga 1 = 0 (191)

We can also relate logarithms from other bases to each other, consider the
equation:

ax = c

Then the following is true by taking logs to the basea and baseb.

x = loga c; x logb a = logb c

Then equating the value ofx, shows that:

loga c =
logb c
logb a

(192)

If b= c, then we get the special result:

loga b=
1

logb a
(193)

The last thing to calculate is the derivative of loga x, we use:

f (x) = log a x =
ln x
ln a

Then we simply di�erentiate:

f 0(x) =
1

x ln a

Example . solve the equation:

9x+ 1
2 � 3x+log 3 5 � 2 = 0

Let us examine each of the terms in this equation in turn.

9x+ 1
2 = 9 x � 9

1
2

= 9 x � 3

= (3 2)x � 3

= 3 � 32x

= 3 � (3x)2
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The second term can be shown to be:

3x+log 3 5 = 3 x � 3log3 5

= 5 � 3x

Then the equation reduces to the following:

3 � (3x)2 � 5 � 3x � 2

Let u = 3 x , the equation is reduced to:

3u2 � 5u � 2 = 0 (194)

This has the factorisation of:

3u2 � 5u � 2 = (3u + 1)( u � 2)

So 3u + 1 = 0 or u � 2 = 0, inserting u = 3 x , then the solutions reduce to:

3x = �
1
3

; 3x = 2

As 3x > 0 for all x, the �rst solution of the quadratic isn't a solution of the
original equation, the other solution states that 3x = 2, so:

x = log3 2 =
ln 2
ln 3
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9 Complex Numbers

9.1 The Basics

Suppose we want to solve the the quadratic equationx2 + 1 = 0, inserting
this into the equation to solve quadratics:

x =
� 0 �

p
02 � 4 � 1 � 1
2 � 1

=
�

p
� 4

2
= �

p
� 1

So we can't solve the equation. So we de�ne the following quantityi =p
� 1, and we calli the imaginary number, if i =

p
� 1, then i2 = � 1. All

numbers can be built out of real numbers and imaginary numbers which we
call complex numbers. A complex number is usually written asz, and we
write z = x + yi, we add complex numbers in the following way, ifz1 = a+ bi
and z2 = c + di then:

z1 + z2 = ( a + c) + ( b+ d)i (195)

The set of complex numbers is denoted byC, complex numbers obey the the
following sets.

1. order doesn't matter in additionz1 + z2 = z2 + z1

2. order doesn't matter in multiplication z1z2 = z2z1

3. Addition is associative (z1 + z2) + z3 = z1 + ( z2 + z3)

4. Multiplication is associative (z1z2)z3 = z1(z2z3)

5. There is an associative identityz + 0 = z

6. There is a multiplicative identity 1 � z = z

7. For everyz, there is a� z such that z + ( � z) = 0

8. For everyz, there is a number 1=z such that z � (1=z) = 1

9. The distribution law holds z1(z2 + z3) = z1z2 + z1z3

If z = a + bi, then we will write down the inverse.

1
z

=
1

a + bi

=
1

a + bi
a � bi
a � bi
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=
a � bi

(a + bi)(a � bi)

=
a � bi

a(a � bi) + bi(a � bi)

=
a � bi

a2 � abi + abi � b2i2

=
a � bi
a2 + b2

So:
1
z

=
a � bi
a2 + b2

(196)

Given a complex numberz = a + bi, we de�ne the complexconjugate, �z by:

�z = a � bi (197)

We can write the real part of a general complex numberz = a + bi as
Re(z) = a and the imaginary part of z as Im (z) = b, so the general complex
number can be writtenz = Re(z) + Im (z)i . The modulus of the complex
number is written asjzj, if z = a + bi, then:

jzj2 = z�z = ( a + bi)(a � bi) = a2 + b2 (198)

We can now solve quadratics likex2 � 4x + 13 = 0, inserting this into the
equation for solving quadratics shows:

x =
� b�

p
b2 � 4ac

2a

=
� (� 4) �

p
(� 4)2 � 4 � 1 � 13
2 � 1

=
4 �

p
16� 52
2

=
4 �

p
� 36

2

=
4 � 6

p
� 1

2
= 2 � 3

p
� 1

= 2 � 3i

9.2 The Argand Diagram/Complex Plane

Complex numbers can be written in the formz = ( a; b) wherez = a+ bi and
this notation is suggestive of the usual plane which we're familiar with.We
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can associate thex co-ordinate with Re(z) and the y co-ordinate with Im (z),
so a general complex numberz = a+ bi as a point on the complex plane. The

Figure 62: The Complex Plane

argand diagram suggest that it is possible for yet another representation of
a complex number, the use of polar co-ordinates. The distancer is just the
modulus, so for a complex numberz = a + bi, r = jzj =

p
a2 + b2, the angle

� is called theargument and is written Arg (z). The argument is calculated
as follows:

Arg (z) = � = tan � 1

�
b
a

�
(199)

From the de�nition of cos� and sin� :

sin� =
b
r

; cos� =
a
r

So re-arranging:
a = r cos�; b = r sin�

As z = a + bi, we can write it as:

z = r (cos� + i sin� ) (200)

This is called the polar form of a complex number.

103



Figure 63: The Polar Representation of a Complex Number

Example . Compute the modulus and argument ofz = �
p

3+ i and plot
it on and argant diagram.

Figure 64: The Polar Representation ofz = �
p

3 + i
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The modulus can be computed as

jzj =
p

z�z

=
q

(�
p

3 + i )( �
p

3 � i )

=
q

(3 + 1 + i
p

3 � i
p

3)

=
p

4

= 2

To calculate the Argument, we compute:

Arg (z) = �

= tan � 1

�
�

1
p

3

�

= � �
1

p
3

= � �
�
6

=
5�
6

So the polar form of the complex number is:

z = 2
�

cos
�

5�
6

�
+ i sin

�
5�
6

��

9.3 Other Identities Associate With Complex Num-
bers

9.3.1 Euler's Formula

Previously we computed a series for forex , there is a special equation called
Eulers formula which deals withei� . Then:

ei� = 1 + i� +
(i� )2

2!
+

(i� )3

3!
+

(i� )4

4!
+

(i� )5

5!
+ � � �

= 1 + i� �
� 2

2!
�

� 3i
3!

+
� 4

4!
+

� 5i
5!

+ � � �

=
�

1 �
� 2

2!
+

� 4

4!
+ � � �

�
+

�
� �

� 3

3!
+

� 5

5!
+ � � �

�
i

= cos� + i sin�
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The result
ei� = cos� + i sin� (201)

Is known as Eulers formula. Setting� = � , shows that:

ei� + 1 = 0 (202)

which links all the most important numbers in maths. A general complex
number can be written asz = rei�

9.3.2 De Moivre's Theorem

We have spoken about the polar representation of a complex number z =
r (cos� + i sin� ), let us examinez2.

z2 = ( r (cos� + i sin� ))2

= r 2(cos� + i sin� )2

= r 2(cos2 � + ( i sin� )2 + 2i sin� cos� )

= r 2(cos2 � + ( i )2(sin � )2 + 2i sin� cos� )

= r 2(cos2 � � sin2 � + 2 i sin� cos� )

= r 2(cos 2� + i sin 2� )

So we have shown something rather remarkable!

(cos� + sin � )2 = cos 2� + i sin 2� (203)

A natural question to ask is if this true for general powers, we cancompute
for z3 = ( r (cos� + i sin� ))3.

z3 = z � z2

= ( r (cos� + i sin� ))r 2(cos 2� + i sin 2� )

= r 3(cos� cos 2� + ( i sin� )( i sin 2� ) + i sin� cos 2� + i sin 2� cos� )

= r 3(cos� cos 2� � sin� sin 2� + (sin � cos 2� + cos� sin 2� )i )

= r 3(cos(� + 2� ) + i sin(� + 2� ))

= r 3(cos 3� + i sin 3� )

We can do the same for any whole numbern and it shows that:

(r (cos� + i sin� ))n = r n(cosn� + i sinn� ) (204)
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