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1 Basic Notions

1.1 Basic Algebra

This course will only be concerned with real and compléxumbers. The rst
(possibly) new concept is that of a bracket. Suppose that you weasked to
add 5 and 3 and divide the answer by 4, one way that you might write th
down is 5+3 4 but this might be interpreted as 5 add 3 divided by 4 which
would result in the answer 3 rather than the proper answer which would be
2.

We need a way of writing this, for this we use the bracket ( and ), angum
in the bracket will be a separate sum, so the original sum in questiorould

be written as:
(5+3) 4=84=2

Whereas the other sum would be:

3 3
+ HN=5+ —=5_—
5+(3 4)=5+ ;=57

So essentially all a bracket is is just a separate calculation, so foraexple

when we see;:
2+((3+1)

All this means is do the sum in the brackets rst, and therefore:
B3+1)=4
and the sum reduces down to:

2+4=6:

1These will be de ned later on in the course



There are some general rules that go along with brackets which wél\state

in the axioms and we will give a n example of how the rule works. Algebra
can be thought of as the general relationship between numbersdaas such

it is possible to write down to some general rules of how numbers workhe
laws of algebra are the following:

1.

Given two numbersa and b, then the sum and the product are both
numbers. This is written asa+ banda b= a b= ah

. Addition and multiplication of numbers areassociative. So given three

numbersa; b; cthen the following holds:a+ (b+ ¢)=(a+ b+ cand
a(bc=(ab c

. Addition and multiplication of numbers arecommutative, the order of

addition or multiplication doesn't matter: a+ b= b+ aanda b= b a.

. There are numbers written 0 and 1, which satish@a+0 =0+ a= a

andl a=a 1l=a

. There are additive and multiplicative inverses, so there is a number

which is written asuch thata+( a)=( a)+ a=0. Likewise there
are numbers denoted ! such thata ! a=a a !=1.

. Distributivity of multiplication over addition. Given three numbers

a; b; ¢ the following holds:a (b+ c)=a b+a c

Let's take some concrete examples, talkke=1;b=2;c= 3,

1.

The second law says we can say 1+ (2 +3) = (1 +2) + 3, which says
that 1+5=3+3=6

. The third law says you don't need to worry about the order whenou

add or multiply, so 1+2=2+1=3and2 3=3 2=6.

. The Distributivity law is easy to understand, it says that 1 (2 +3) =

12+1 3=2+3=5

In this course and most of mathematics the notation for inversesrea as
follows: a+( b)= a bfor additive inverses, instead of saying we add the
additive inverse ofbto a, we say that wesubtract bfrom a. For multiplicative
inverses we use the notation:

a“"= - (1)

2These axioms de ne what is known as aeld in maths



There is some more notation that is important which pertains multiplicon
with x and itself. We writex x = x2 andx x x = x3, so if we multiply x
by itself n times then the notation is:

ok

(2)
The laws of powers (as they are known) are the following:
n times n +_m times
A z} -
1. x" x™m=x"M so X ﬁ“i f(_{z_)f = xrr}]| iﬂ
m times
2. x"  xM=x" ™ Consider an examplex* x?
& K K X X ,
— = ———— =X X=X 3
X2 K X ®)
3. If n =0 then we can see as a result of the power law we get:
1
x M= N (4)
4. x° =1, this comes from:
. K
xXP=xtt=_-=1 5
. (5)

5. (x")M=x" sox?)3>=(x x) (X X) (X X)=x X X X x x=x°

6. xi=n = R X, this is notation really

7. xMN = (x¥Mm this applies two previous laws.

1.1.1 Addition and Subtraction

It is possible to add and subtract numbers in the form of algebraic pres-
sions, so for example:

2ab+5ab=(2+5) ab=7ab (6)

Using the distribution of multiplication over addition and the expressia can
be simplied. Consider the expressiorab+ ac, this expressioncannot be
simpli ed as they contain unlike terms.

3



1.1.2 Factorisation

The basic idea of factoring is to reduce an expression into its most glest
parts. For example with numbers, the number 15 has factors 3 arlg as
15 = 3 5. The reason why we can do this is because of the sixth law of
algebra:

a (b+c=ab+ac (7)

We say that the factors ofab+ acarea and b+ c. Let's examine the following:
(a+ b(c+ d). We appeal to the sixth law of algebra:

(a+ b(c+d) = a(c+ d)y+ b(c+ d) Using the sixth law on the rst bracket
= ac+ ad+ bc+ bd Using the sixth law again

The factors here area+ band c+ d. Here's another example, nd the factors
of ax + 3x3, The sixth law applies here and we see thatx + 3x = x(a+ 3)
and the factors arex and a+ 3. There are some important expansions to
know when trying to factorise an expression:

(ax+ b? = a®x®+2abx+ P (8)
(ax b? = a’x® 2abx+ P (9)
(ax+ b(ax b = ax® (10)
(ax+ bB)(cx+ d) = acd +(ad+ bdx + bd (11)

Factors of the formax + b are calledlinear factors. Let's have an example,
let's try and factorise x? + 8x + 15 into linear factors. We rst note that
there is a term inx?2, that means that there are two linear factors and that
the coe cient of the x2 terms is 1, so for the rst step we write:

X2 +8x +15=(x+ )(x+ ) (12)

Using the fourth expansion on the list, we can compare = ¢ = 1, which
shows that:

(x+ b)(x+ d)= x>+ (b+ d)x + bd= x> +8x + 15

So we need to nd two numbers which when added together give 8 and
when multiplied together yield 15, these numbers are 3 and 5 and soeth
Factorisation of x> + 8x + 15 is x> +8x +15=(x + 3)(x +5)

1.2 Dierent Types of Numbers

This section deals with the di erent types of numbers that you will met in
maths.

3x will be used throughout this course, so get used to it.
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1.2.1 N - Natural Numbers

Natural numbers are whole numbers bigger than zero. $o= f1;2;3;::.0.
Sometimes when zero is included, the numbers are writtéy = 0;1;2;3;:: ..
If ais a natural number then the notationa 2 N is used and we sag belongs
to the natural numbers.

1.2.2 Z - Integers

These are all the whole numbers including zero. o= f:::; 2; 1;0;1;2;:::0.
The natural numbers are contained within the integers

1.2.3 Q - Rational Numbers

These are numbers of the form:

5; b60

They obey all the laws of algebra stated at the start of these nae Some

care must be taken when adding and multiplying rational numbers, it isnly
possible to add two fractions with the same denominator, i.e.

atc
b

From here it is possible to write down a general law of addition of two dc-
tions:

a Cc
— 4+ — =
b b

X
+ —
y b

ol o

The inverse of a fraction is also quite easy to calculate. Let us nd éinverse
or reciprocal of the fractiona=h write the inverse ad , then according to the
fth law of algebra, | can write:



Multiplying this equation throughout by bto obtain:

a b
aI—BbI—aBI—l b=1b
Using the fourth law of algebra and the rules for powers. Multiplyingya *

(or dividing by a if you prefer), shows that:

a b
l=alal=21=11=at p=-"
a a
This is sometimes written as the rule:
a b
1=— = — 13
5= a (13)

1.2.4 R - The Real Numbers

There are numbers which are not rational numbers, for example éke is a
number X, which when squared gives the answer 2, $6 = 2. Indeed you
can prove that there is no rational whose square is 2. Supposerthaas, the
there would bea; b2 N* wherex = a=bsuch that:

a2

= — 14

- (14)
Or a? = 217, it is presumed thata and b have no common factor, then we
have shown thata? is even, so this also shows tha is even. Writea = 2n
and insert it back into the equation

(2n)? =4n?=21¥) B =2n?

So ¥ is even which in turn shows thatb is even but we assumed thata
and b have no common factor which contradicts our original premise and
therefore there is po rational number whose square is 2, this realmber is
usually written as ' 2. Real numbers are typically irrational numbers which
when represented as decimals and have an in nite non repeating aeal. A
famous irrational number is = 3:1415927.:

1.3 The Modulus of a Number

Let a be any number, positive or negative, then we de ne thenodulus, jgj
as the following: 8
< a Iif ais positive
jaj = 0 ifa=0
' a if ais negitive

4The notation a2 X means thata is a member of the setX
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So we can think of the modulus as making all numbers as positive redar
less of the sign of them to start with. This is a very important concdpin
mathematics. For examplg 3j =3, and j2j = 2.

1.4 The Factorial

The factorial of a natural numbern is de ned to be:
nNn=nm 1) (n 2)(n 3 (n 49 321 (15)

so as an example 4! =43 2 1=24and 3!=3 2 1 =6, by de nition
or=1.

1.5 Inequalities

An inequality compares two unequal quantities. Consider the numbe3 and
8, we write 8> 3 to denote that 8 is greater than 3. Likewise we write 8 8,
as 3 is less than 8. Some other notation is used for less than or eqoahnd
greater than or equal to which are written as ¥ 8 and 8> 3 respectively.
It is possible to multiply equalities by positive numbers and not changehe
direction of the inequality, if a> band k > 0, then

ka> kb (16)

and likewise ifa 6 b. Take for example 8> 3, and multiplying through by

2 say, will result in 2 8 > 2 3, which means 16> 6 which is true. When

multiplying through by a negative number, the direction of the inequkty,

consider 8 and 3 again, multiply them by 1 to get 8 and 3 but now
3> 8. Soingeneralifa> bandk < 0, then

ka6 kb (17)

and likewise ifa 6 b. Adding any numerical quantity to both sides of the
inequality will not change the sign of the inequality so i > b, then

a+ k> b+ k (18)

Together the rules are fora> b

a+k > b+k (19)
ak > bk; k>0 (20)
ak 6 Dbk; k<O (22)



The modulus is often used in relation to inequalities, consider the inegjity
jXj 6 1, if x is positive this just means that:

X6 1
However ifx is negative,jxj = x and so the inequality reads:
x6 1

To nd out what this means for x we have to multiply through by 1 and
according to the rules stated before, we are required to chandeestdirection
of the inequality, so:

(x)> 1) x> 1

So the inequalityjxj 6 1 is really two inequalities in one and in full it means
that:
16 x6 1

There is a famous inequality related to inequalities called the triangle in-
equality which states that if a and b are two numbers then:

jat 6 jaj+ jh (22)

This is used everywhere in maths.



2 Functions & Graphs

Basically amap is a rule to go from one set of numbers into another set of
numbers, for example takex 2 R and my rule will be to square it, so we
write X 7! x? and sayx maps to x?. The domain of a map (and hence a
function) will be the set of numbers that the map (or function) mag from.
We can draw a picture of the map by writing thS co-ordinates as«(x?) and
plot a graph. Another example would bex 7! X, wherex > 0, the graph
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Figure 1: The mapx 7! x?

would be:

We have to be careful about our de nition of our map as ix < 0 then

we would be taking the square root of a negative number, and this i®n
allowecP. This map is said to beunde ned for x < 0 and we must exclude
it from the de nition of our map. A function is a map where the map maps
to a single number. So the rst example of a mapx( 7! x?) Ie‘ve gave was
a function as well as a map but the second example (7! X) is not a

function as there are two possible values tfbaA can get mapped to. However

if we restrict the range of the function to + X then we have a well de ned
function: This function is written
Fx)= Px=x3 (23)

There are other types of map that we have to be aware, considdret map
X 7! 1=x, the graph of this function is: There is only one point in the domain

SYet, we will talk about complex numbers later
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Figure 2: The mapx 7! P X
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Figure 3: The mapx 7! P X
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Figure 4: The mapx 7! x !

that need concern us and that is the poink = 0 as the \number"

1

0
does not make and mathematical sense. So the map7! x ! is not a
function. However, if" is a very small number, thenf (") = " ! lis
still a perfectly reasonable positive number. Likewise( ")= " ! 1is

a perfectly reasonable negative number. The only problem = 0, so if
we remove this point from the domain then we have a perfectly well aed
function. We write Rnf0g® for the domain. The function is then written as

f :RnfOg! R (24)

Example . Under what conditions is the expressionIO f(x)=x 1=0a
function? We rst must re-arrange into something more understadable.
P @:x 1 =20
, f(x)=x = 1
, g f(x) X Multiplying by x
f(x) = x® Upon squaring

We start o by setting the domain to be the whole real line. Leta > 0 and
examine the image of a, f( a) = ( a)? = a?, so negative numbers are
okay. What about 0, well & = 0, so zero is ne, so this map is a function
with it's domain the whole real line.

5The notation X nfag means take away the element from the set X
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X

Figure 5: The functionf (x) = x?

Example . Under what conditions is the expressionx( 1)f (x) 1=(1 x)?
a function if at all? We begin by re-arranging the expression:

(x Df(x) 1 = (1 x)?

C (X DF(X) = 1+(1  x)?
BTSN (i G
, f(x) = X11+(x 1)

The rst thing we notice is that there is a 1=something. If the denominator is
at any point zero then the map is unde ned mathematically, i.e. in thatase
whenx 1 =0 or whenx =1, so we exclude this from our domain. Apart
from that there are no problems with any other numbers, so the dain is

Rnf 1g.

Example . Under what condition is the expressiox(f (x))2 1 =0 a func-

tion? We must rst re-arrange this expression in the following way.

xf(x)? 1 =0
. x(f(x))? 1
. (F(x)? = % Dividing by x

12



f(x)

Figure 6: The mapf (x)=(x 1) '+x 1

1 1 ,
, f(x) = p—iz X 2 Upon taking square roots

First of all we note that there is an ambiguity in the sign, one value of
X gives rise to two di erent numbers. Therefore we are obliged to chee
a sign, either a plus or a minus. Given a choice of a sign, is the map a
function? Start out with the domain being the whole of the real lindR. Take
any positive numbera5 0 in the domain and look at the image of a, this
will be” f( a) = +1 = a, however taking the square root of a negative
number isn't allowed, so we must restrict our domain to the numbers
such that x > 0. Now look at 0, under our function this is mapped to 30
which as we've discussed before is mathematically meaningless, andvso
must take this from our domain. The domain for our function is redusd to
the numbersx such that x > 0. We can see from previous exampleﬁ that
restricted to thispdomain we can get two well de ned functionsf (x) = 1=" x
andf(x)= 1= x.

2.1 Sequences

A special sort of function which has the domain of the natural nundrs, N,
which can have the range in the real number®k. So functionsa, : N! R,
a typical sequence is of the form:

_,, C°
a, =2+ - (25)

"We're taking the positive sign for de niteness
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£ (x)

L L L L L L L L L
0 0.2 0.4 0.6 0.8 3( 12 14 16 1.8 2

Figure 7: The functionf (x) = 1:p X

2 4 6 8 10 n 12 14 16 18 20

Figure 8: A sequence

Sequences are a large part of maths, we will be looking at theit of a
sequence aa ! 1 , and we will make this notion clear, so when we come to
the notion of the limit of a function, we will already have an idea.

2.2 Composition of Functions

We can take functions of functions, take for example the two futions:

gx)=1+ %; h(x) = x?

14



Then we can look at the following functiong(h(x)) = g(x?), now all this is

IS:
1

gh() =1+ =1+
Likewise we may examind (g(x)) which is:

h(g) = (g00)* = 1+

Note that h(g(x)) and g(h(x)) are not the same function, as a point of no-
tation, we write:

g h(x)= h(g(x)); h g(x)= g(h(x)) (26)

2.3 Inverse Functions

2.3.1 De nition of Inverse Functions

The inverse of a functionf (x) is calledf (x) and is de ned as the following:
f P fx)=f f '(x)=x (27)

So what this means is if we take a pointa in the domain say and it takes
the valuebin the image, sob= f (a). The inverse functionf ! takes a point
in the image off (x), band maps it to a point in the domain off (x), a, so

f Y= a
-

b

Figure 9: The Inverse Function

There is a well de ned rule that goes frona to band a well de ned rule that
takesbto a.

2.3.2 The Graph of f(x) and f %(x)

Consider the curve obtained by re ectingy = f (x) about the liney = x.
The re ection of the point A(a; b on the curvey = f (x) will be re ected
to a point A° whose points are If; 8, so we just interchange thex and y
co-ordinates.

15



Figure 10: The Inverse Function

Example . Find the inverse function of the function:

1
f(x)=1 ——:
(x) 7
So we write the graph of thisay =1 (x 2) !, to nd the inverse function
we swap thex andy around to obtainx =1 (y 2) ! and we arrange to

nd y as a function ofx:

1
1
)y 2 = ﬁ Taking the inverse
1
= 2+
)y = 2+ —

So the inverse function is given by:

1
1 —
fi0=2+ —

We can check to see if this is indeed the inverse by computihg! f (x) and
checking if this is justx.
frfx = (¢ Yx)
1
1 f i(x) 2

16



=1
2 (x 1t 2
1
=1 I —
x 2)1t
1
x 1t
= 1+x 1
= X

Computing f f (x)

fofi) = f H(f(x)

1
= 2 T
= 2+ 1

1 1 x 21

1

AR
= 2+x 2
= X

So we have shown thaf * f(x) = f f %(x) = x, so we have indeed
found the inverse. A intuitive way to think about inverses is if we can iw
a horizontal line and it crosses the graph at only one point.

17
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=Y

Figure 11: The Inverse Function

So for example that the red curve has an inverse because the honial
line only crosses the red curve at one and only one point. The purpleree
however, the horizontal line crosses the curve twice, which meatimat the
inverse does not exist. Although for both curves give a value pfor a unique
value ofx, however for the purple curve, it is possible to take a single value
of y and it will come from two possible values oX, which is the reason why
the purple curve has no inverse.

18



3 Linear Equations

3.1 Basic De nitions
A linear function is a function of the form:
f(x)= ax+Db (28)

wherex 2 R, the domain for linear functions are the whole dR and the range
is also the whole oR. The linear function can be expressed as a graph, and
the equation for the graph is written is the form:

y=mx+c (29)

The numbersm and c have geometrical meaning which we will come to later.
Linear functions are known agines, the graph of a typical linear function(or
line) is given by:

-1 -0.“5 [‘) O.‘S ‘3( 1‘.5 é 2‘.5 3
Figure 12: A Typical Linear Function

To understand the geometrical meaning af, we ask when will the line inter-
sect with the y-axis? When the curve intersects thg-axis the x co-ordinate
will be zero. So they value is:

y=m O0+c=c

So the point at which the line will intersect will be c, so this gives the
geometrical meaning of the numbec, it is the value of y when the line
intersects they-axis. The other way to describe a line is the measure of how

19



Y2t
Y2 — Y1

Y1+ .
T2 — T -

T Ty T

Figure 13: The Gradient

steep it is, this is called thegradient.
The gradient is de ned as the following:

gradient = Zz ill (30)

Let us compute the gradient of our liney = mx + ¢ between two points
(X1;y1) and (Xz;Y>), the gradient will be:

Y2 Y1

gradient

mx,+ ¢ (mxy+ C)
X2 X1

So we see that any line in the plane can be completely speci ed by givirget
point at which it intercepts the y-axis and the gradient. Lines which have
the same gradient are callegharallel.

The sign of the gradient is an important part for determining the waythe
line slopes. If the gradient is positive then the line will look like gure 13

If the gradient is negative then the line will look like gure 14.
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-1 -0.5 0 05 3( 15 2 25 3

Figure 14: The Negative Gradient

3.1.1 Dening a Line From Two Points

There is a unique line that passes through any two given points in thdgme
and given these two points it is possible to construct the line passingrough.
As mentioned before there are two pieces of information that arequired to
completely de ne the line, the gradient and they intercept. Let's write the
the equation of the line as:

y=mx+c (31)

The two points in question are Xi;y:) and (Xz;Y-.), the gradient, m of the
line will be given by:

m = Y2 Y1 (32)
X2 X1
So we can write: Vo y
2 1
= + 33
y v Xlx C (33)

To nd c, evaluate (33) at K1;Y1), SO

Y2 Y1
= + 4
Y1 v Xlxl C (34)
Hence y y
_ 2 1
C=VY1 %o X1X1 (35)

So the equation for the line is given by:

_ Y2y
v oyvi= 2L x) (36)
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3.1.2 The Normal of a Line

The normal of a liney = mx + cis a line which is perpendicular to the
original line.

Figure 15: The Normal

Let the gradient of the normal ben, then the following holds:

mn= 1 (37)

3.2 Intersection of Lines
A natural question to ask is if we have two lines de ned by:
ay+ bx = ¢ (38)
dy+ex = f (39)
then where would they intersect (if at all)? At the point of intersecion the
values forx andy will be the same, so we can equate the values>obr y.
Example . Find the intersection of the lines § + x =3 and y+2x = 2.

As stated before, the values of th& andy will be the same, To do this write
both curves asy = mx + c:

+

N X
NI W

y =
y = 2x 2

At the point of intersection, the y values will be the same so we can set:
X 3

—+ -=2Xx 2
2 2

22



We can then re-arrange to ndx.

oX _ 7
2 2
So the x co-ordinate of the intersection is given by = 7=5. To nd the
y co-ordinate substitute the value forx into either of the equations for the
lines:
yzzz 2:1_4 E): 14 10:6-
5 5 5 5 5

So the point of intersection of the two lines is the point;z(; ‘g‘)

Ve L L L L L L L
0 0.5 1 15 3( 25 3 35 4

Figure 16: Intersection of Lines

3.3 Shortest Distance from a Point to a Line

We have considered the distance between two points, now let us smter the
distance between a point and a line. There is an in nite number of poist
on the line which we may choose in computing the distance.

The line "; from the point (a; b represents a typical line from &;b), these
lines are an arbitrary distance away from the lind.. It only makes sense
therefore to talk about the line which gives theshortest distance from the
line. This will be the normal line from (a; )8 to L.

Example . Find the shortest distance from the point (22) to the liney+ x =

8This is geometrically obvious from gure 17 but we will prove that it is ind eed the
normal line which gives the shortest distance
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T

Figure 17: Distance from a Point to a Line

1. First of all, get the equation of the line in the formy = mx + ¢, so upon
rearranging the equation of the line becomes:

y= x+1
The gradient of the normal satisesnm = 1, so:
n= 1

and so the gradient of the normaln is n = 1. The next task is to obtain the
equation of the normal toy + x = 1, we already know the gradient, so we
can write:

y=X+c
We know a point on the line, (22), so we can use this to nd out the value
of c.

2=2+cC

giving the y intercept, c to be ¢ = 0, so the equation of the normal is given
by y = x. In order to calculate the shortest distance from the point to the
line, we need to know the point on the lineL which the normal of L will
intersect. As before the values ok and y will be the same for both curves
and they satisfy:

y = X+1

y = X
To nd the point of intersection we equate they values to nd that:

1
X+1l=x) 2x=1) X_§

24



Inserting this value into any of equations of the lines shows that=1=2 is
the y value of the intersection, so the point of intersection is €2;1=2). The
nal task is to compute the distance between the two points which isarried
out using Pythagoras' theorem:

r r

. 12 12 9 9 3
= 2 - + 2 = = -+ - =
distance > > p—2

So nally th% shortest distance between the point (2) and the liney =
Xx+1is3= 2.

25

15

0.5

Figure 18: Distance from a Point to a Line
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4 Quadratic Equations

4.1 Introduction

A quadratic equation is a function of the form:

f(x)= ax*+ bx+c a60 (40)

Where x 2 R is the domain anda; b;c2 R

Figure 19: Examples of Quadratic Equations

Some examples of quadratic equations:

f(x) = x2
f(x) = x?+2x 3
f(x) = 2x°+4

4.2 Factorisation of Quadratic Equations
4.2.1 Case Where f(x)= x2+ bx+c

Remember that quadratic equations can by split up into the produét of
linear functions'®. A linear function is a function of the form:

f(x)= ax+b (41)

®This means that they're multiplied together
OMore on this later
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All the linear functions in this section will be of the formf (x) = x + a or
f(x)= x a. We claim that we can write the quadratic in the forni':

f(X)=(x+ )x+ ) (42)
So we must have that:

X+ ax+ b (x+ )(x+ )

= x(x+ )+ (x+ )

= X°+Xx + X +

= X%+ X + X +

= X?+( + )x+
Comparing the coe cients, we see that in order to write the quadrc equa-
tion in the form (42) then we must look for numbers;  which satisfy:

a = +
b =

Example . Factor the quadratic equationf (x) = x2 + 3x + 2 into linear
factors. The working that we have done tells us that we can write

X2+3x+2=(x+ )(x+ )

Where and satisfy:

3 = +

2 =
Now the only factors that 2 has are 1 and 2, as 2 = 2, but note that 1+2 = 3.
So if we choose =1 and = 2'2 this completes the Factorisation. As a

check, we multiply out the brackets:

(x+1)(x+2) = x(x+2)+1(x+2)
X2+2x+1 x+2
X2 +3x+2

So we do indeed get back the quadratic equation we started with.
Example . Factor f (x) = x> 5x+6. We are looking for and such that:

5 =  +
6 =

There are a number of ways that 6 can be factored:

11

and are related to the roots of f (x)
2\We could have alternatively chosen =2 and = 1, this would not have changed
anything.
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factor 1| factor 2| +

1 6 7 6

1 6 5 6

2 3 5 6

3 2 1 6
From the above choices, we simply pick the two factors which give the-
quired coe cients which are = 2 and = 3. As a check we shall
multiply it out.

x 2)(x 3) = x(x 3) 2(x 3

X2 33X+ X 2X+6
x> Bx+6

So the factorisation worked.

4.3 Case Where a61

This section deals with the factorisation of general quadratic eqtians. The
linear factors involved will be of the form:

f(x)= px+ (43)

So we look for a factorisation of (x) = ax? + bx+ c in the following way:

ax’+ bx+c = (px+ )(gx+ )
= px(gx+ )+ (gx+ )
= pgl+px +qx +
= pg¥+(q +p )x+
So we have to nd numbersp;q; ;  which satisfy the following:
a = pq
b= q+p
c =

An example will make things clear.

Example . Factor f (x) = 6x2+ x 2. As before we look for linear factors
of the form px+ g, now from previous working we need to nd four numbers
p;qg; ; such that:

6 = pq (44)
1 = q +p (45)
2 = (46)
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We shall look for the values op and g rst. The number 6 has 2 di erent
sets of factors, 6 =16=2 3. Try p=1 and q = 6 as possible guesses,
inserting these values into (45) and (46) shows that and satisfy:

1 = +6
2 =
There are no solutions (with integer coe cients) of the above solubns, so

we were wrong in our choice gb and g, so try p = 2 and q = 3, inserting
these into (45) and (46) shows that and satisfy:

1 =3 +2

2 =
Now 2=1( 2)=( 1) 2 are possible factorisations. One solution we can
ruleoutis =land = 2because3+2 =3 ( 2)+2 1= 6+2= 4.
Likewise = 2and =1lisntasolutonas3 +2 =3 4= 1, sothe
only solution we are leftwithis = land =2as3 +2 = 3+4=1.

So the factorisation is ( nally!):

f(x)=(2x 1)(3x+2) 47)
Checking this shows:

2x 1DBx+2) = 2x(3x+2) (3x+2)
= 6x°+4x 3x 2
= 6x°+x 2

4.4 Completing the Square

There is an alternative way of writing the quadratic equatiorf (x) = ax? +
bx+ c and that is the form:

ax?+ bx+ c=a[(x )%+ ] (48)
Note for future reference:

X% +2ax + a
2 ax+ a?

(x + a)?
(x a)?

X
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4.4.1 Case Where f(x)= x?+ bx+ c

An example with f (x) = x?+2x + 3 will give an idea of how this works. We
compare the quadratic equation with X + a)? + b Now:

X2+2x+3 = (x+a?’+b
= x?+2ax+ a’+b

So we can equate coe cients to obtain:

2 = 2a
3 = a’+b

So,a =1 from the rst of these equations and 3 =2+ b, sob= 2 and the
quadratic equation is written as:

X2+2x+3=(x+1)?+2 (49)
What about the general case? We want to write:
X2+ bx+ c=(x+ p)?+q (50)

Then as before we write:

(x+p)?+q
x*+2px+ p*+ q

X%+ bx+ c

So we can equate coe cients to obtain:

b = 2p
c = ptq

The rst of these equations shows that:

b
= = 1
P=3 (51)
Inserting this into the second equation shows that:
b ? b2
c= > +q=§+q=z+q (52)
>0 7 7 4
C
q= 7 c = 2 (53)



So the squared form of the quadrati€ (x) = x2+ bx+ cis:

b ? B 4c
2+ + = + — 4
X“+ bx+ c X > 7 (54)
As a check we shall multiply it out:
X+92b24c_ SO T T
2 4 2 2 4
. x+9 L b x+9 b 4c
- 2 2 2 4
= x2+9x+—x+§ E+c
- 2 4 4
= x%+ bx+cC

So it is in squared form.

442 Case Where a60

The way forward in this case is very simple when completing the squai@
f (x) = ax?+ bx+ ¢, we simply write:

ax’+ bx+ c=a x*+ §x+ g = ag(x) (55)

So we're reduced to answering the previous question with the case 1.
Example . Complete the square for the quadratid (x) =3x> 2x+1. So
we do as suggested, write the quadratic as:

2 1
3x? 2x+1=3 x? ¥t 3 (56)

So now we are left for the task of completing the square fg(x) = x2
2x=3 + 1=3, write:

x2 2=3+1=3 = (x p?+q
X2 2px+ p*+ q

So we are left to examine:

WIFRPWIN

p~+q

31



So, from the rst of these equations shows thap = 1=3, inserting this into
the second equation shows that:

3> 2X+1=3 X (57)

Example . Complete the square of (x) = ax®+ bx+ c. We do as before
and take out the factor ofa to get:

ax’+ bx+ c=a x*+ gx+ g = ag(x) (58)
We want to write g(x) in the following form (x + p)? + g, so

, Db Cc
X“+ =X+ —
a a

(x+p)?+q

= x*+2px+pi+q

So we're left with the two equations:

2p

[VENeY I ENey

= p+g

So from the rst of these we see thap = b=x2a) and inserting this into the
second equation shows that:

C b 2 K
a” 2 9T’ (>9)
and soq is given by:
> 4ac
9= 4 (60)
So the squared form is:
b 2 P 4ac
2 = —_
ax“+ bx+c=a x+ 2 o (61)
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To see that this is the solution, we'll expand it.

ax+b2 *  dac —ax+b2ab2 4ac
2a 432 B 2a 432

= ax’+ bx+c

4.5 Finding the Maximum and Minimum of a Quadratic
Equation

A minimum of a function f (x) is a numberb, such thatf (x) > b. There is
always a pointa in the domain off such thatf (a) = band the condition for
a minimum is written f (x) > f (a) for points in the domain surroundinga.
Likewise amaximum of a functionf (x) is a number b, such that f (x) < b.
There is always a pointa in the domain of f such that f (a) = b and the
condition for a minimum is written f (x) < f (a) for points in the domain
surrounding a.

f(x)

L » w N = o = N [ > o
T T T T T T T T T

15 1 s 3( o5 1 15 2
Figure 20: Examples of Maxima and Minima

The green curve shows a minimum at the poink = 1, so all the points
around x = 1 satisfy f (1) 6 f (x) for all points in the domain. The red curve
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shows as maximum at the poink = 1, and all points satisfy f (1) > f (x) for
all points in the domain.

By completing the square on a quadratic, it is easy to compute whahé
minimum and maximum are and where they occur. As an example take
f(x) = x2 2x+3, completing the square for this gived (x) = (x 1)2+2,
what is the minimum of this function and where does it happen. Now the
function is made up of something positive (the squared ternx( 1)2 > 0
and something else. By taking away the positive term, we are makirigthe
smallest it can be'3, so the minimum value off (x) will be 2. Where does
this happen? It will happen when the positive term is zero, i.e. when:

(x 1)%=0 (62)

and this happens wherx = 1. So the minimum occurs wherx = 1 and the
minimum is 2.

The sign of the coe cient of the x? term will determine if there will be a
maximum or minimum. So iff (x) = ax? + bx+ ¢, then if a > 0, there
will be a minimum and whena < 0 there will be a maximum. We can use
equation which came from completing the square for a general quatic, if

f (x) = ax?+ bx+ c, then:

0
zJ'—{
a X + £ 2 L4ac (63)
2a 432

So to make the function as small as possible (for positia or large as
possible (for negativea), we take away the squared term to nd the extremum

value, which is
¥ 4dac

4a2
which happens at the valuex = b=2a.

(64)

4.6 Finding Roots of Quadratic Equations

A root of a function f (x) is a point a in the domain off such thatf (a) = 0.
There are several ways to nd root for quadratic equations, wedve discussed
many such methods earlier on in this chapter. Factorisation is the sptest
method to nd roots. Note that a quadratic equation has no morelan two
roots.

B3This will be continued later on in di erentiation
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Example . Find the roots of f (x) = x> x 2. f(x) has the following
factorisation, f (x) = (x 2)(x + 1), the, we observe that:

f(2) = 2 2)2+1)=0 3=0
f(1) = (1 2)( 1+1)= 30=0

So the roots off (x) are x = 2; 1. In general ifa is a root of a function
f (x), then f (x) can be written as

fx)=(x ag(x) (65)

whereg(x) is another linear factor.

The other method to use is completing the square.

Example . Find the roots of f (x) = x> x 2 by completing the square.
The completed square of (x) is given by:

12 9
2 —
X X 2= X = -
2 4
Setting this expression to zero to nd the roots, we obtain:
12 9
X = - =0
2 4
« 12 9
’ 2 4
1 3 . :
X5 =5 two signs from square rooting
« = 1 3
’ 2

So the roots are (once agaimy =2; 1
The general case . Suppose we want to nd the roots of (x) = ax?+ bx+ c,
then we use the completed square form of the equation which is:

b 2 P 4ac

2 —_
ax‘+ bx+c=a x+ —
2a 452

We set this to zero and re-arrange as we did in the previous example:

Qx4 b 2 P 4dac _ 0
2a 432 B
b 2 P 4ac
, X+ — 0
2a 432
b 2 ¥ 4dac
’ X+ — =
2a 432



b ¥ 4ac
L] X + - = A -
2a Ba
« = b > 4dac
; B 2a

So the roots off (x) = ax? + bx+ c are given by:

p___
b ¥ 4dac
X = > (66)

This is one of the most famous equations in all of mathematics. Notbat if:
¥ 4ac > 0 then there are two (real) roots to the quadratic.
¥ 4ac= 0 then there is only one root to the quadratic.

¥ 4ac < 0 then there are no (real) solutions to the quadratic

4.7 Graphing Quadratics

We will want to plot quadratics in the (x;y) plane, to see what they look
like. We have already seen the typical shape of a quadratic earlier omnthe
chapter, the shape of a quadratic is called parabola. We already know that
they either have a maximum or a minimum and we know where these occu
and what they are by looking at the completed square form of the gdratic.

There are some questions that we have to ask regarding when draqg
the quadraticy = ax?+ bc+ c:

1. Does the parabola have a maximum or a minimum? This can be an-
swered by examining the sign od

2. Does the parabola cross the-axis? If so where?
3. Where does the parabola cross theaxis?

4. Where does the extremum value occur?

5. What is the extremum value?

Once we have answered the above questions then we can draw atueate
picture of the parabola. We shall answer these questions one byedoy an
example.

Example . Plot the graphy = x2 x 2. We answer the gquestions one by
one.
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1. From the general equation, we hava = 1;b= 1 andc= 2, so
a > 0 so the parabola will have a minimum.

2. The parabola will cross thex-axis wheny = 0 and so we solve the
equation x> x 2 = 0, so this is the same as nding the roots
of the equation and gives the meaning of what roots are, it occurs
when the graph crosses tha-axis. We can nd this three di erent
ways: factorising the quadratic, completing the square and pluggn
the numbers into the formula for the roots (66). We choose the las
option with a=1;b= 1 andc= 2, so using (66) we proceed.

b "® Zac
Zap
(1) (1?7 41(2
21

1,2
So the parabola crosses the-axis at the pointsx = 1 andx = 2.

3. The parabola will cross they-axis whenx = 0, so to nd this point
just plug x = 0 into the equationy = x> x 2to nd:

y=0%2 0 2= 2 (67)
So the parabola will cross the-axis aty = 2.

4. In order to nd where the extremum value occurs (in this case a imi-
mum) we complete the square of the quadratic:

0

zJ

2 x 2= X 129
2 4

The minimum will occur when the quantity in brackets is zeros, i.e.
when:

Or whenx = 1=2.
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5. Examining the completed square form at = 1=2 will give us the value
of the minimum. So

NI X
NloOohl©

So the minimum isy = 9=4.

This gives us all the information we need to plot the graph of = x> x 2

10

Figure 21: Graphing of Parabolas

Example . Plot the graph of the functionf (x) = 2x?+ x + 1. We again go
through the checklist in order to get an idea of the function.

1. The sign of thex? is 2 which is positive so the parabola has a minimum.

2. In order to nd the points at which the function crosses they-axis in
order to do this we have to solve the equationx2 + x +1 = 0, we do
this by the same method as before, by using equation (66).

bpb2 4ac

e
1 @12 421
2 2
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1 p1 8
1 6_7
4

We can't take the square root of a negative number, so from this we
can conclude that the parabola doesot cross thex-axis.

3. Where does the quadratic cross thg-axis? We setx = 0 in the
quadratic:

y=2 0°+0+1=0
So the quadratic crosses thg-axis aty = 1.

4. Where does the minimum occur? To nd this we complete the square
of the quadratic:

x 1
2P+ x+1 = 2 X*+ 2+ =
2 2
1 2 1 1
= 2 + — —+ —
Y4 167 2
1 2 7
= 2 + =+ —
T2 T 16

So the completed square form of the equation is:

2%+ x+1=2 X+ 4+

We examine the positive term and see at what point that this will
become zero, this will be whex + =4 =0 or whenx = 1=4.

5. What is the minimum? To nd this set x = 1=4, inserting this into
the completed squared form of the quadratic shows

2 7 2 7 7 147
+ =2 0 +— =2 —=_-=

o 1
Minimum = 2 7 16 16 1616 8

1
4
4

So the minimum is 78.

So the graph is given by:
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Figure 22: Graphing of Parabolas

4.8 Intersection of Quadratic Equations

So far we have only spoken about one parabola, we now move on tm tw
parabolas. One of the questions to ask is where do these parabahesrsect?

Figure 23: Intersection of Parabolas

Suppose we have two quadratics which we write:

f(x) = ax®+ bx+c (68)
g(x) = dx®+ ex+f (69)
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In order to nd the intersection points write the equations asy = f (x) and
y = g(x), then the points (x;y) will be the same for both equations. So to
nd the x value at which they intersect we can equate thg values, so:

ax*+ bx+c=dx®+ex+f) (a dx>+(b ex+c f=0 (70

So to nd the x points all we have to do is nd the roots of & d)x?>+ (b

e)x + ¢ f =0, and we have techniques to nd these roots. These will give
no more than two possible points at which the parabolas intersect.oTnd
the y values, we insert thex values which we found earlier into any of the
equations to nd the values required.

Example . Find the intersection of the following quadraticd (x) = 2 x2+ x+3
and g(x) = x?+4x + 1. Write the quadratics as:

y = 2x*+x+3
y = x?+4x+1

The points of intersection can be found by setting thg values the same, so:
2%+ x+3= x2+4x+1) x> 3X+2=0
This can be factorised (we've done this before),
x2 3X+2=(x DX 2

So thex values of the points of intersection ar& = 1;2. To nd the y values,
simply insert these values into either two of the equations.

y=2 1°+1 1+3=2+1+3=6

So one of the points of the intersection points is (8). To nd the other
point of intersection:

y=2 2°+1 2+3=8+2+3=13

So the other point is (2 13).

4.9 Quadratics in Other Guises

Sometime you come across an equation which looks nothing like a quetadr
but is a quadratic, for example:

f(x)=x* 3x?+2
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Figure 24 Intersection of Parabolas

The above equation doesn't look much like a quadratic but if we change
variables fromx to y, so thaty = x2, then we can writé*:

gly)= y* 3y+2

and we have a quadratic iry, and we can use all our previous methods to nd
out information about this equation, for example its roots. The qudratic
in y can be factorised in the following wayg(y) = (y 1)(y 2), then we
see that the roots ofg(y) arey = 1 and y = 2. However we know that
y = X2, so we can write;x? = 1 and x? = 2, upon taking square roots we
obtainx = 1 andx = 2, and we see that there are four solutions to our
original equation.

Example . Find the solutions (if any) to the equation 4 2 2=0. As
we have been talking about quadratic equations, we suspect thdtis is a
guadratic equation of some form, note that:

& = (22)% = 2% = (2%)2

So this is inserted back into the equation to see:
(22 2 2=0

De ning a new variabley = 2%, shows that:

2

y-y 2=0

“Note that g(x?) = f (x)
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This is a quadratic equation, it had a factorisation of the form:

(y 2(y+1)=0 (71)
So the two solutions arey =2 and y = 1. Using the original variable we
have 2 =2 and 2* = 1, the second of these has no solution and so we are

left with 2* = 2, so the solution isx = 1.

4.10 Polynomial Equations

A polynomial is a function of the form:
f(x)=ax"+a, X" '+ +ax+ a (72)

Some examples are:

f(x) = a Zeroth(constant) order polynomial

f(x) = ax+ b First(linear) order polynomial

f(x) = ax®+ bx+ c Second(quadratic) order polynomial

f(x) = ax®+ bx+ cx+ d Third(cubic) order polynomial

f(x) = ax*+ b+ cx*+ dx+ e Fourth(quartic) order polynomial

4.10.1 Factorising Polynomials

The main technique used to factor polynomials is to nd a root of that
polynomial. So letp(x) = a,x"+a, 1x" '+ +a;x+ ay by some polynomial
and let be a root ofp(x), so that p( ) =0, then p(x) has the linear factor
(x ) and p(x) can be written in the following way:

p(x) =(x  )a(x) (73)
where g(x) has the form:
qx) = by X" '+ +bx+ by (74)

Example . Take a cubic polynomial,p(x) = ax®+ bx?+ cx+ d with the root
x = and factorisep(x). If is a root of p(x) then p( ) = 0 and therefore
p(x) has the following form:

p(x) =(x  )(Ax*+ Bx + C)
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Expanding the brackets:
p(x)

(x )(Ax?+ Bx+C)

= Xx(Ax?+ Bx+ C) (Ax?+ Bx + C)
= Ax®+Bx?+Cx Ax? Bx C
Ax*+(B A)X*+(C B)x C

This is equal top(x) so:
ax®+ b+ cx+d=Ax3+(B A )X*+(C B)x C

Now we equate the coe cients because the equations are the same

a = A
b= B A
c = C B
d = C
Then we can nd what the values ofA; B and C. which are:
A = a
B = b+ a
C = c+ b+ 2a

Example . Factoriseh(x) =2x3 5x2? 4x+ 3 given that a root is x =
As 1is aroot then there is a linear factox ( 1) = x + 1, so write:

2x3 5x®> 4x+3=(x+1)(Ax*+ Bx + C)
Expanding this shows:

2x3 5x2 4x+3

(x +1)(Ax?+ Bx + C)

X(Ax?+ Bx + C) + (Ax?+ Bx + C)
Ax3+ Bx?+ Cx+ Ax?+ Bx + C
Ax3+(B+ A)x?+(C+B)+ C

So
23 5x? 4x+3= Ax®+(B+ A)X*+(C+B)+ C
As they are the same equation the coe cients must be the same:

2 = A
5 = A+B
4 = B+C
3 =2C
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The solutions areA =2;B = 7 andC = 3. So the rst factorisation is:
h(x) = (x+1)(2x* 7x+3)=(x+1)g(x)
We are left to factorise the following quadratic:
g(x) =2x? 7x+3

This can be factorised as followg(x) = (2x 1)(x 3), and the total
factorisation is given by:

h(x) =(x+1)(2x 1)(x 3)

4.11 Odd and Even Functions

An even function satis esf ( x) = f (x), and odd function satis esf ( x) =
f (x). Every function is a sum of an odd function and an even function.
Let f (x) be an arbitrary function, then:

eyven o}(fld

2T {2 {

f(x)+ f( x)+f(x) f( x)
2 2

The functionsg(x) = (f (x) + f( x))=2 andh(x) =(f(x) f( x))=2. Now

g(x) is even because:

FOCX)+TC(x) _T(x)+F(x)_Fx)+f( x)

2 B 2 - 2
Likewise, h(x) is odd because:

(0= 10 TLOD T 10 109 100

An example of an odd function isf (x) = x3, so

F(0=( 0= = &

f(x)= (75)

g( x) = = g(x)

An example of an even function is(x) = x?, as
FCx)=( x)?=( 1) =x*=f(x)

Suppose thatf (x) is an odd function andg(x) is an even function, then
h(x) = f (x)g(x) is an odd function because:

h( x)=1( x)g( x)=( FNex) = fx)gx)= h(x)

A similar method can be used to show that the product of two odd futions
is an even function and the product of two even functions is an evé&mction.
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4.12 The Equation of a Circle

In this section we will discuss the equation of a circle. Let the centref
the circle be at @; b and have radiusr and let (x;y) be a point on the
circumference.

Figure 25: Equation of a Circle

The idea is to use Pythagoras' theorem to compute the required wfion.
So from our knowledge of co-ordinate geometry we know how to goate
the distance between two points in the plane, the two points bein@jb and
(X;y). So we simply write this down:

(x a?+(y b*=r? (76)

This gives us the required equation of the circle.

4.12.1 The General Form of a Circle
Equation (76) is but one form of the equation of a circle, the other:is
X2+ y?+ ax+ by+ c=0 (77)

Provided that:

C

a?
7 Z<O (78)
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To pass from (76) to (77), the brackets are expanded and to gigom (77) to
(76) you would complete the square.
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5 Limits

This chapter will be vital for understanding the concept of di eremial cal-
culus, the notion of a limit is one of the most important concepts in mais.
To give an idea, let's examine the concept of convergence of a seqae

5.1 Convergence of Sequences

We say a sequenca, converges to dimit a if for all " > 0 there exists an
N 2 N such that whenn >N, ja, aj <". There are several ways to write
this formally, one way is to writea, ! aasn!l , or

lim a, = a (79)

n!l

Let's examine the idea with an example. Consider the sequence:

1y
n

a, =2+

26

25F O

24F

23F

Figure 26: Convergence of a Sequence

Note that as whenn gets larger the points of the sequence get closer to the
value 2, so that we can guess that the larger the value of the closer still
the points will get to the value 2. In fact, if we choose a speci ¢ valuef n,
say Ny, is it possible to have a \corridor" of width 2'; around 2 such that
all the points in the sequence lie in that corridor. If we choose a langealue
of n, say N, > N ; then we can choose &, <" ; such that all the points of
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Figure 27: Convergence of a Sequence

a, will all lie in a corridor of width 2", around 2.
In this example ( gure 27) here we have choset, = 0:3 which corresponds
to N; = 5 and ", = 0:15 which corresponds tdN, = 10. We shall prove
formally that the sequencea, = 1=n! Oasn!1l . Letus x " and nd
an N 2 N such that:

E <"

n

Consider the real number %", if we chooseN as X" rounded up to the
nearest integer and then add one then:

1 _.

— <

N
So we have found ouN for which all the points are within a corridor of
width 2" centred around 0O, so we have shown thath! Oasn!1l . The
point is that we have shown thisfor every possible”. So that means that
there is always a natural number that the rest of the sequence iswgthin
a small corridor. This result is the building block of all the other resuft in
this section.

5.1.1 The Algebra of Limits

There are a few rules which make life very easy when calculating the lisnit
of sequences. Supposg ! aandh,! b60asn!1l then the following
is also true:

a,+hb, ! a+b (80)
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anh, ' ab (81)

an a

Example . What is the limit of the sequence:

_n?+2n+4
% = B2+ n

To start with 1° divide the denominator and numerator byn? to get:

_ 1+2=n+4=r?
" 8+1=n =n?2

De ne two other sequence$y, and ¢, by:
by = 1+2=n+4=p
G, = 8+1=n =n?
Now we have shown that #n! Oasn!1 , so by the algebra of limits:

1 11
=~ =2 21 00=0
n n n

So again by the algebra of limits:
bh=1+2=n+4=n’! 1+2 0+4 0=1
Likewise forc,:
c,=8+1=n =n?! 8+0 0=8
The initial sequencea, is given bya, = b,=G,, so the limit of a, is given by:

b, 1
= _— 1 =
an G 8

5.1.2 The Natural Number, e
The sequence:

1
an = 1+ﬁ (83)

has a limit which is callede, the natural number. The natural numbere
2:7183 is a very very important number in maths and it crops up everyvere.

15This will be a standard technique when computing limits
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5.2 The Limits of Functions

The limit of a function, f (x) is similar to the de nition of a limit of a sequence
but is based around a pointa in the domain of f (x). The formal de nition
of the limit of f (x) at x = aif for all "> 0 there exists a > 0 such that if
O<jx a< thenjf(x) 7“j<".

f(x) A

8

.
—
a-6%a+s

Figure 28: The Limit of a Function

The idea is to examine how (x) behaves around the pointx = a. Is there
one particular value that the functionf (x) homes into a particular value,’
as the value ofx homes intoa!®. If this is the case then that value is the
limit. Like the sequence we can ask what values &fnear x will make f (x)
no more than a distance of away from the value it seems to be homing in
on.
Example . Show that:

lilm1 5« 3=2

In the de nition we seta=1, " =2 and f (x) =5x 3. So that means we
have to show that for any" chosen there is a such thatj5x 3 2j <",
computing this:

5x 3 2

j5x 5
5jx 1

6But is never equal to a
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The task is to nd the which satises 0< jx 1j< . If we choose = "=
then the calculation shows that 0< jx 1j < which is what we were asked
to prove.

5.2.1 Algebra of Limits

There is a computational trick that will allow us to compute new limits flom
old, it's called the algebra of limits. Supposé (x) ! and g(x) ! 60
asx ! athen the following hold asx ! a:

f(x)+ g(x) ! + (84)

f (x)g(x) ! (85)
(0, _

30 ! (86)

5.2.2 Limtsas x!1

We have spoken a great deal about taking the limit to a nite point butnot
as the limitx!1 , we will de ne the limitas x!1 in the following way,
let y = 1=x, then:

lim f (x) =Ilim f (1=y) (87)
x!11 yl' 0
Example . What is the limit of the function as x ! 1
X2 +2x +4
Fix)= 8x2 + X
To start with replace x with 1=y to get:
g Y ot2y t+4
A= 571y
Multiply top an bottom by y? to obtain:
_y_ L+2y+4y?
fa=)= g3y 2
De ne two other sequenceg(y) and h(y) by:
gly) = 1+2y+4y?
hy) = 8+y y?

By the algebra of limits:

gly)=1+2y+4y*! 1+2 0+4 0=1
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Likewise forh(y):
h(y)=8+y y2! 8+0 0=8

The initial sequencef (1=y) is given by f (1=y) = g(y)=h(y), so the limit of
f (1=y) is given by:

aly) , 1
f(lzy)= =221 =
So:
- xX?+2x+4 1
X 8X2+ X I
5.3 Continuity

By now we should be able to realise that there is a di erence in taking ¢
limit as x ! a of a function f (x) and evaluating the function at the point
X = a, for example take the function:

100 ifx=0
FX)= 1t xso0

Since no matter what" > 0 can takejf (x) 1j = O provided x 6 O, i.e.
O<jx O< )j f(x) <" forany ;"> 0. However when we evaluate
f (x) at 0, we arrive at the value 100. So we have shown that:

Iimof (x) 6 f(0) (88)
X!
The collection of functions for which
limf (x) = f (a) (89)
x! a

are calledcontinuous functions. A function is calleddiscontinuous atx = a
if it not continuous at x = a. An easy way of thinking about continuous
function are functions which you can draw without taking your pent o
the paper. To give an example of a function limit use the functiorf, (x) =
5x 3, we showed that the limit of this function asx ! 1 was 2, now
f(1)=5 1 3=2, sowe have shown that:

limf(x)=f(1)=2

So the functionf (x) is continuous at the pointx = 1.
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5.4 One-Sided Limits

Rather than taking the limit as x ! a, it may only be possible to take one
sided limits. It is possible to consider the limit ax & a and x % a (gure
29). From these more general de nitions of limits, it is possible to sebhat
the one sided limits may be di erent, but if they are the same then weam
say:
limf (x) =Ilim f (x) =lim f(x) (90)
X& a x%a x! a

f(l'>‘

fla)+46
fla
fla)—6

R/

4
1
a

Figure 29: One-Sided Limits

The one-sided limits can be de ned as:

imf()=lim f(a+ );  lmfeg=lmf(@ ) (91)

Continuity can also be de ned by one-sided limits. A function is continaus
at x = aif the following is true:

lim £ (x) = lim £ (x) = f (a) (92)

Example . Find the limit of f (x) at x = 2 from the de nition of one-sided
and comment on the continuity atx = 2. The function f (x) is de ned as:

X2 X+2 X6 2

F= 5 1 X> 2
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Figure 30: Graph off (x)

Start by computing the one-sided limits, rst the lower limit:

lmf(x) = I|{nof(2 )
= Ii'mO(2 ¥ 2 )+2
= lim4 4 + 2 2+ 42
= 4
The upper limit is:
)|(I8I:n2f(x) = I|{n0f(2+ )
= |ip102(2+ ) 1
= lim4+2 1
1o
= 3

So we see that:
)I(lr;pzf (x) 6 ler;‘pzf x)=f2)=4

So there is no well de ned limit asx ! 2 of this function and as such this
function is discontinuous atx = 2.

5.5 Indeterminate Limits

Suppose we are asked to examine the limit as! 1 of:
x> 1
x3 1

f(x) =
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As a rst attempt we write:

| x> 1 0

x'1x3 1 0

There seems to be a problem as there are no such number a8.0n order
to resolve this problem we note that it's possible to factorise the nuenator
and denominator as:

(x 1)(x+1) _x 1 x+1

Fo0 = (x 1D2+x+1) x 1x2+x+1

It is possible to cancel a factor ok 1 to rewrite f (x) as:

X+1
F) = X2+ x+1
So when we compute the limit, we obtain:
X2l X+1 2
lim =lm ——— = =

x1x3 1 x1x2+x+1 3

This is how such limits are usually treated. There is a general rule foom-
puting the limit of functions which end up in the form G=0 called L'Hopital's
rule which involves di erential calculus. We will cover this in the next clap-
ter.
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6 Dierential Calculus

6.1 The Basics
6.1.1 Tangents

Consider any two points,A and B on any curve: The line joining AB is

Figure 31: Arbitrary Curve

called the chord and the straight line that touches the curve at a single
point is called thetangent. One important thing to notice is that as the the
tangent is a straight line. The next task is to try and nd the the tangent
line at a point A say. If B is another point on the curve, then it is possible to

Figure 32: The Tangent of a curve

approximate the tangent line by the chord joiningB to A. As B moves closer
to A however, the chord becomes a better approximation to the tangie So
asB gets closer toA, it is possible to say.

E!i'mA Chord between A and B = Tangent at A (93)
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Figure 33: Approximations to the Tangent

So now there is a way to compute the tangent lines for any curve wedik
The de nition can be applied to any particular point on any curve.

6.1.2 Gradients of Curves

Suppose we have a general curve in the plane described asf (x), suppose
we want to gain a measure of the steepness of the curve. The emtrmethod
we have for doing this is by examining the gradient, however thereeaseveral
places that we can apply the de nition of the gradient:

Y A

Figure 34. Computing the gradient ofy = f (x)

All the applications of the de nition of the gradient give di erent answers.
The idea for general curves is to use the notion of a tangent thatw described
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the previous section. We have to look at the gradient of the tangetine at
a speci c point a on the curvey = f (x), call this point A = (a;f (a)). The
way to do this is select another poinB = (a+ h;f (a+ h)) and compute the
gradient of the chord AB:

(a+h)y f(a _f(a+h) f(a)
ath a h
The gradient calculated will be the gradient of the red line in gure 35:

gradient = f

(94)

v

fla+h)+

fla) +

+ + >
a a+h x

Figure 35: Computing the gradient ofy = f (x)

As the values ofh get smaller and smaller the red curve will only touch the
original curve at the point x = a, this will be the tangent line. There is a

YA

»>

t
a x

Figure 36: Description of the Tangent Line

limiting process going on when computing the tangent of the curve at= a.

The derivative of f (x) at x ais de ned to be:

fa+th) f(a
h

dy _ .
o - @@=l

(95)
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The process of nding the derivative is calledli erentiation. As an example
let us compute the tangent line of the curvey = x? at the point x = 2.

. . (2+h? 22
gradiant = If!!m0 h
. 22+4h+ h%2 22
= |im
hi 0 h
= lim 4h + h?
" ho h
= lim 4+h
ht 0
= 4
8107

Figure 37: The Tangent ata =2

Now let us compute the derivative ofy = x2:

2 2
lim (a+ h)c a
h! 0 h
a?+2ah+ h? a2
h! 0 h
m 2ah + h?
h! 0 h
= |im 2a+ h
hl 0

gradiant

= 2a
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So we write this asf {a) = 2a. Let's examine the tangent line of the line
y = mx + c at the point x = a, so as before:

m(a+ h)+ ¢ (ma+ ¢

radiant = i
9 ) h
- ma+ mh+c ma c
T hio h
= fjm MmN
ht o h
= |lim m
h! 0
= m

There is an alternate de nition of the derivative. If we letx = a+ h, then
the de nition of the derivative becomes:
dy

ax - @=im,

f(x) f(a)

< a (96)

We can use this de nition to compute the the derivative ofy = x" where
n 2 N. In the process of computing the derivative we will have to compute
the limit of:

A simplistic examination of this limit shows that we arrive at G0. So
following the rule of the previous chapter we attempt to nd a facto for
g(x) = x" a", we note thatg(a) =0 and sox a must be a factor ofg(x)
and we can writeg(x) = (x a)h(x). Write h(x) as:

h(x) = a;x" 1+ ax" 2+ +aX" K+ g x" K1+ +a, X+ ay 1
To nd the coe cients, we insert h(x) into the de nition of g(x) and expand:

(x  ah(x)
(x  a)ax" '+ +ax" K+ awx" Kt +a )
3.1Xn + + akXn k+1 4 ak+1Xn k 4+ + a, 1X

n n

a

X

aggx" 1+ aax" ¥ aaux" K1+ aa, 1
= ax"+ (& aa)x" “+ aa, 1
Now the x" ¥ term must vanish, so:
a1 ag =0 (97)
We also note that
a"= aa, 1; =1



soa, 1 = a" ! Usingk+1= n 1in(97) shows thata, , = aa, , or
a, » = a" 2, from this we can calculate all the coe cients of the series and
see that:

h(x)=x”1+ax”2+ +an2x+an1

We can now formally compute the derivative off = x" at x = a.

dy .ox"oan
—= = lim
dx .-, xl'a X a
= lm x" '+ ax" 2+ +a@" x+a !
X: a
n times {
= an l+ + an 1
= na" !
So: d
d_y = na" 1 (98)
Xx:a

Equation (98) also works for non-integer powers. Considgr= x*2, then:

1 1
dy . Xz az
_Z - |”"n -
ax ., xla X a
1 1
. X2 az
= lim p=—P—pP——p
xUa(h X+ )( X a)
1
= |lim p=——Pp—
x'a X+ a
1X 1
= — 2
2

Which corresponds to our formula whem = 1=2.

6.2 Higher Derivatives

Di erentiation is a process which is applied to a function. It can be apped
to a function more than once. The normal notation for a derivativas:

d -ty

dx X=a

This process may be applied td (x) more than once. So for example

g g
lim dex:a+h dxjx:a
hl 0 h
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is called thesecondderivative and it written:

d?f
— ; f%a
e i 1
This process can be carried out any number of times, so we can wraewn
for example:
d5f

56 ’
dx X=a

f (56) ( a)

If for exampley = xP, then:

o d2f d3f
- p 1. — p 2. = p 2
vl 2 e p(p  1)x* 5 e p(lp D 2)x

6.3 Sums, Product, Quotient and Chain Rules

6.3.1 Derivative of a Sum

Suppose thatf (x) has the formf (x) = au(x) + bux) then can we write the
derivative of f (x) in terms of uq{x) and v{x), computing the product:

au(x + h)+ bvx + h) au(x) + bux)

"0 = i, h
_ g AU(x+ h)u(x)) + B(v(x + h)  v(x))
- lrlmfno h
- lim au(x +h)  u(x) N bv(x + h)  v(x)
hi 0 h h
- alim u(x+ h) u(x) + blim v(x+ h) v(x)
hl 0 h hl 0 h

= aub(x) + bAx)

So:
fqx) = auqx) + bW(x) (99)

6.3.2 Product Rule

Let u(x) and v(x) be two functions and letf (x) = u(x)v(x). Is there a
simple rule for calculating the derivative off (x) in terms of u(x) and v(x).
Let's insert f (x) into the de nition of the derivative:

o - jim @+t h) f(a)
dx .-, ht' 0 h
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im u(a+ h)v(a+ h) u(a)v(a)

_ l:;n:u(a+ h)v(a+hh) u(a)v(a+hh)+ u@v(a+ h) u(awv(a)
- 0u(a+ hr)] (@) s s VO hr)] V@
_ 'QT“OU(M hr)] u(@) o 4 h)+'f£“oV(a+ hr)] V@)

So theproduct rule is:

of

du dv
ax . = v(a)& + u(a)& (100)

X=a X=a
Take as a simple exampld (x) = x3, write u(x) = x and v(x) = X2, so
f (x) = u(x)v(x). Computing the derivative:

i = i(uv)
dx X=a dx X=a
= v(a)@ + u(a)ﬂ By the product rule
dx X=a dx X=a
= a’ 1l+a (2a)
= a’+2a’
= 3a°

6.3.3 Quotient Rule

Let u(x) and v(x) be two functions and letf (x) = u(x)=v(x). Is there a
simple rule for calculating the derivative off (x) in terms of u(x) and v(x).
Let's insert f (x) into the de nition of the derivative:

o . f(a+h) f(a)
dx ., Ih{no h
e e
B lrlﬁno h
- v(a)u(a+ h) u(a)v(a+ h)
hi 0 hv(a)v(a+ h)
- v(@u(a+ h) u(a)v(a)+ u(a)v(a) u(a)v(a+ h)
hi 0 hv(a)v(a+ h)
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v(a) u(a+ h) u(a) u(a) v(a+ h) v(a)

- IMno v(a)v(a+ h) h v(a)v(a+ h) h
_ v(a) ua+ h) wu(a . u(a) v(a+ h) v(a)
- ov(a)v(a+ h) h ht ov(a)v(a+ h) h
v(a)d ] u(a) & ]
- v(a)?
So the quotient rule is:
o B v(a) § . u(a) § s
dx .. v(a)2 (101)

To give a simple example, compute the derivative df(x) = x=(x 1), use
u(x) = xandv(x) = x 1, then:
of d

v(a)d . u(a) . .
= V(@2 By the quotient rule
(@ 1) 1 a1l

(a 1)

1
(a 1)

6.3.4 The Chain Rule

This concerns the derivative of a function of a function: If (x) = u v(x) =
v(u(x)). The way about computing the derivative is slightly di erent:

u v(x) u v(a

iu v(x)

= lim
dx x!'a X a
e VUG v(u()
x! a X a
_ i VUG v(u(@) uG)  u(a)
xl'a u(x) u(a) X a

5 Yu())  v(u@) . ux) u(@)

x! a U(X) u(a) x! a X a
- i vux) v(u@) . ux) u(a)
gx)! g@ u(x) u@ xa X a
dv du
@ & X=a

u(x)=u(a)
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So the rule is:
_dv du

— = — — 102
dx X:au YT du ax ., (102)

u(x)=u(a)

Take u(x) =1+ x and v(x) = x", we will calculate the derivative off (x) =
u v(x)= v(ux))=(1+ x)". Now:

dv

— = nu(a)" ?!
du u(x)=u(a)
And nally computing du=dx yields:
% =1
dx .-,

thenu Vvqa) is:
u va)=n(@1+x)" !

6.4 L'Hopitals Rule

When examining limits we were left with one case when we arrived at the
result:

0
0
For example when examining the limit:
im XL
xt 1x3 1

We are looking at the limits for functions:

f(x):%

to x = a whereu(a) = v(a) = 0, then when we compute the limit asx ! a
we obtain the result G0. Let us examine this limit in more detail armed
with our knowledge of di erentiation.

. u(x)
m. Yo
_ i UX)u(a)
= lim, v(x) v(a)
L u(x) u(@x a
= Im v(x) v(@x a

lilmaf (X)

asg(a)= h(a)=0
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im ux) u(@ v(x) v(a

x! a X a X a
_im u(x) u(a) im v(x) v(@) !
x! a X a x! a X a
u¥a)
vqa)

So when we compute a limit and we arrive at) we can just apply L'Hopital's
rule to get a well de ned limit. Let us see how this works with our examp:
f(x)=(x? 1)=x® 1)asx! 1, doing the limit in the normal way shows
that the limit is 0 =0. Let:

9(x)

gx)=x> 1, h(x)=x® 1, f(x)= hx)

So we apply L'Hopital's rule:
gAx) =2x; h9x)=3x?
So the limit becomes:

im XL i 22 2
x! 1X3 1_x! -

Which corresponds to the value obtained earlier.

6.5 dx=dy= 1=dy=dx
A common result in calculus is the fact that:
dx _ 1
d_yf(x)=f(a> dy
dx

X=a

(103)

To see lety = f (x), then assuming that the inverse existx = f (y), write:

Pt T=r oo (109
Now examine the equation:
y=f * f(y) (105)
Di erentiating this equation w.r.t. y using the chain rule shows that:
FYF SN H(y)°=1 (106)
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However, usingf !(y) = x shows that:

PO Hy)°=1 (107)

Which then reduces to:
ﬂ dx

dx -, dy f(x)=f(a).
This is the equation we were asked to show.

(108)

6.6 Maclaurin Series

Functions are generally quite di cult to deal with. It is possible to turn
these functions into a nite or in nite sum of powers ofx. An example or
two will make this clear. It is possible to write (1 +x)" as a nite series in
x in the following way: Write

(L+x)"= ag+ apx + apx? + agx>+  + a,x"
To nd ag, setx =0 to nd that:
(1+0)"=a+a 0+
which shows thatag = 1, so:
(L+X)" =1+ apx + ax?+ agx>+  + apx" (109)
To nd a; we di erentiate both sides of (109) to nd:
n1+x)" 1= a;+2ax+ (110)
To nd a;, setx =0 to nd that:
n1+0)" *=n=a +2a 0+
soa; = n. To nd a, dierentiate (110) to nding
nin 1)(1+x)" 2=2a,+6asx + (111)
Setx =0in (111) to obtain:
nn 1)(1+0)" 2=n(n 1)=2a,

Soa, = n(n 1)=2. We can continue this process of di erentiation and
setting x = 0 to nd all the ax. Let's examine the formulae for a general
function f (x), so we write:

f(X)= ag+ ax + ax2+ agx®+  + axk+ (112)
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As before, to nd ag, we setx = 0 in (112) to nd that f (0) = ay, so we
write:
f(x)= f(0)+ ax + apx® + agx®+  + ax <+ (113)

To nd a, di erentiate (113) to obtain:
fAx) = ap +2ax +3agx?+  + kaxk 1+ (114)
To nd ay, setx =0 in (114) to obtain f 0) = a;, sof (x) becomes:
f(x)= fO)+ FYO)x + apx?+ agx®+  + ax* + (115)

To nd a,, di erentiate (114) to obtain:

f%x)=2a, +6asx+ + k(k 1ax* 2+ (116)
setx = 0in (116) to obtain f °¢0) = 2a,, or a, = f °00)=2, thenf (x) becomes:
0
100= 1)+ 10+ s apc+  + agd+
To nd as dierentiate (116) to nd:
FOR) =Gas+ +k(k 1)k 2)axk 2+ (117)

Setx =0to nd f%0)=6a; or a3 = f °0)=6, f (x) becomes:

f(x)= f(0)+ fY0)x + fOgo)x2+ 19 0(;(b)x3+ + axk +

Example . Find the rst three terms of the Maclaurin series off (x) =
151 x). We write:

= ag+ agx + ax®+

1 X
To nd ag, setx =0 to see thatap = 1, di erentiating f (x) to obtain:
1 - a +2ax +
Setx =0to nd a; which isa; =1, di erentiate again to nd:
2
s = 2a+
(T x3 "

Setting x = 0 shows that 2 = 2a, and soa, = 1 and f (x) can be expressed

as:
1

=1+ x+ X2+
1 X
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6.7 Stationary Points & Extrema

A stationary point of a function f (x) is a point wherefYa) = 0. To nd
out what this means geometrically we have to examine the tangent lineTo
recall, the tangent line at the pointx = a is the straight line with gradient
f a) going through the point (a; f (a)). To construct the tangent line, write
it asy = mx + c, the gradient of the line will befYa), som = fqa), to
compute c, we know that the line passes throughg f (a)), so

f(a)= fqa)a+ c
soc= f(a) afYa) and we can write the tangent line as:
y f@=f%)x a (118)

Now suppose thata is a stationary point, that is f {a) = 0, then the tangent
line to that point has the form:

y=1(a)

This is just a horizontal line, so locally the function must a minimum, a
maximum or a point of in exion.

Figure 38: Stationary Points

Point A is alocal maximum, point B is alocal minimum and point C is a
point of in ection.
Example . Find the stationary points of f (x) = 2x? 3x +1, di erentiating
shows thatf {x) = 4x 3. for the stationary point, f {x) =0, hence & 3=
0 and hencex = 3=4, we do not yet know if this is a maximum/minimum or
point of in exion. Inserting this into f (x), shows that:

3 32 3 9 9

- = — 41 = - =
1:424 34184

1
+1= =
8
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6.7.1 Determining the Type of Extrema |

Let us examine the pointsA, B and C in gure 38 in order. Point A is a

maximum, say atx = a, the points close by tox = a will give valuesless than
f (a), so choose a small numbér> 0, and examine the value of (a+ ") and

f(a "),thenf(a)>f (a+ ")andf(a)>f (a "). Likewise if we examine
the gradients arounda, then the value before the maximunfqx ") > 0

and like wisef {x + ") < 0.

Likewise examining pointB in gure 38 which is a minimum and happens at
x = b. We examine the functionf (x) at the point By = b " andB, = b+ ".

If the point bis a minimum, thenf (b+ ") >f (handf(b ") >f (b. We

can also examine the gradients, for a minimum we ha¥é{b ") < 0 and

fqb+ ") > 0.

Concerning the point of in exion at the point ¢, then we can tell a point of
in exion if the following occurs:

f(c ")y<f(c)<f(c+");or f(c ")>f(c)>f (c+")

Likewise the gradients should be both either positive or both negagyv
Example . Determine the extrema in the previous example. We know the
extrema happened atx = 3=4. so choosé = 0:1 and examine the values of
x = 0:85 andx = 0:65. f(x) = 2x?> 3x+1, then f(0:65) = 0:105 and

f (0:85) = 0:105, so from our criterion, both these values are greater than
the extremum value, so the extrema must be a minimum.

6.7.2 Determining the Type of Extrema Il

There is an alternative may of determining the type of extrema. Thiss
done from the second derivative. If we recall the geometrical imf@etation

of the derivative and that was examining the gradient at a point. Sohte
second derivative will examine how the gradient changes. For a minimu
the gradient begins as negative and then becomes positive, so thadgent

f {x) is a increasing function and so for a minimum ak = a:

df

e >0 (119)

a

Likewise with a maximum, the gradient begins positive and then afterhe
maximum the gradient becomes negative, so the gradient is decriegsand
f {x) is a decreasing function. So for a maximum, the following is true:

df

O ~ <0 (120)

a

71



returning to our example f (x) = 2x?> 3x + 1, the second derivative is
f %¢x) = 4 so at any value will be positive and hence according to our critenp
the extrema is a minimum.

6.8 Shortest Distance from a Point to a Line

We stated earlier that we would indeed prove that the minimum distare
between a point and a line was to take the normal from the line and weog
about proving that statement using di erential calculus. We begin g writing

Ya

T

Figure 39: Distance from a Point to a Line

the line asy = mx + ¢ and the point in question asP = (a;b. The idea of
the proof will be to compute the distance fronP to a general point on the
line and di erentiate to nd the minimum and then compute the point on
the line for the minimum and nally calculate the gradient. Let (x;y) be a
general point on the line, the square of the distance betweea; O and (x;y)
is given by:

2=(y B2+(x a)?

But y = mc+ c, so:
2x)=(mx+c b?+(x b?

We wish to seek to minimisel;, but if we minimise 12 then we will have
minimised |1, so di erentiating the square of the distance:

%:Zm(mx+c bh+2(x a=0
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So we can compute thex co-ordinate where the minimum will occur which

will be at:
a+ mb mc

Xm = T me
The y value of the minimum will be:

atmb mc _ ma+ m2b+ ¢

= MXy + C= M c=
Ym " 1+ m2 1+ m?2

The next (and nal) task is to calculate the gradient, this is:

. b b ma c¢ 1
gradient = Ym _ = =
a Xm mMm2a mb+ mc m

Which is the normal to the lineL. So the proof is done.
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7 Trigonometry

7.1 Basic Revision

Trigonometry is essentially the study of angles in a triangle.

a

Figure 40: A Typical Triangle

The most basic fact about angles in a triangle is that the sum of the ietnal
angles add up to 180 so + + =180 . However all triangles can be
made up of a special type of triangle called aght angledtriangle

0

>

-

a

Figure 41: A Right-Angled Triangle

The little square inside the triangle indicates the angle is 90 All of our

de nitions in this chapter will use a right-angled triangle. Sidec of the

triangle in gure 41 is called the hypotenuse. It is well known that given a
right angled triangle: The lengths of the sides are related as

b

Figure 42: A Right Angled Triangle

a’+ = ¢ (121)
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To show this, two squares are constructed out of four of the tnmgles in the
following manner

Figure 43: The Construction

The area of the inner circle is:
(a b?=a’+? 2ab (122)

The area of the large square is given by?.The area of the large square is
made up of the inner square and the area of the four right angledangles.
As two of the triangles will make up one rectangle with one side of lergt
a and the other side of lengthb which means that the area of the rectangle
will be ab. So the area of the triangle is

1

2ab (123)

The area of the large square is given by:
¢ = (a b?+4 %ab

4
= a’+ ¥ 2ab+ éab
= a’+ ¥ 2ab+2ab
= &+

So we have proved that:
a’+ F = ¢ (124)

as required.
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7.2 Radians

There is a natural unit of length when looking at circles, the radius. lem
the radius is is also possible to de ne a natural measurement of angthis
is called theradian.

Figure 44: The De nition of the Radian

The de nition of 1 radian is given that the radius is of length’ the arc length
between two di erent lines drawn from the centre of the circle to te edge
is also of length”. Now suppose we have 2 radians, this will correspond to
an arc-length of 2, likewise with 3 radians etc, so in general if we have
radians then this will correspond to an arc-length of . The circumference
of a circle is 2" , so suppose that there ar& radians in the circle, we have
that:

X =2") x=2
So there are 2 radians in one circle. To convert from degrees to radians,
note that 2 ¢ =360 , so:

¢ 180
- . c—
1 180 1°= — (125)

7.3 Sine, Cosine & Tangent
7.3.1 Geometrical De nition
Given a right angled triangle ( gure 45), we can de ne the following':

sin = E); cos = EI; tan = 9 (126)

c c a

All the above are valid for0< < = 2

7 An easy way to remember this is the word SOHCAHTOA
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a

Figure 45: A Right-Angled Triangle

7.3.2 Analytical De nition

The analytical de nition of sin , cos and tan are:

sin = —3+ —5 + = % ﬁ 2n+1 (127)
31 Bl _ @n+1)
2 4 )4- ( 1)n

=1 —+—+ = 2n 12
cos 217 41 _ @n)! (128)
n=0
tan = 2 (129)
CcOoSs

Figure 46: Graphs of sin and cos

From the above de nition it is possible to obtain a great many propeiées of
the trigonometric functions, moreover they are valid for any angleThe rst
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two properties that we note straight away is:
sin( )= sin; cos( )=cos (130)

The other properties that we note are the derivatives:

d ) 2 4
d—(sm ) = 1 §+ E+
= cos
d 3
d—(cos ) = + §+

= sin

From the above we can compute what the derivative of tanusing the quo-
tient rule, which will be left as an exercise. There is a particular limit whic
is of interest, that is: '

. sinx

lim —

x!' 0 X
From our knowledge of sirx and L'Hopital's rule, we know that:

sinx .. cosx _ cos(0)
= lim = =1
xI' 0 X x'o 1 1

7.3.3 De nition of

The number is de ned to be the smallest positive number such that:

cos 2 =0 (131)

This is the analytical de nition of

7.4 Properties of Trig Functions
7.4.1 Shifting by

2

The de nitions of sin and cos are very dependent upon the orientation
of the triangle, for example, we can rotate the triangle around andse the
same de nitions for the two triangles: Then from gure 47 we can agpte

the following:

=sin =cos

Olo

= 132
2 ( )
Likewise

COoS =sin

oOloT

(133)
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Figure 47: Di erent Orientations

From the above relations we may compute:

oy Cain
sin > sin > ( )
= cos( )
= cos
cos -+ = coS =
> 5> ()
= sin( )
= sin
Using the same logic we can show:
sin( + )= sin; cos( + )= cos
Then nally:
sin(2 + )=sin ; cos(2 + )=cos

So we see that the values for sinand cos repeat every 2 radians, they
are said to be2 periodic.
7.4.2 Values at Particular Points

We can calculate certain values of the functions sin cos and tan . Con-
sider an equilateral triangle with sides of length 1, then all the anglesill be
= 3 radians.
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Figure 48: Computing Values

The rst two observations we can write down are:

p_
3 1 _
in—= —- — = _- — = 4
sin 3 5 cos3 5 tan 3 3 (134)
Upon using =6= =2 =3, we obtain:
p_
. 1 3 1
smg =5 cosg = tan 5" p—é (135)

There is one more angle that we may compute. Consider a square wathch
side length 1 Then we can just write down the values:

1

wl
sl

NE)

1
H

1

Figure 49: Computing Values

1 1
in_ = g = g _ =1 1
sin 7] 9—2, cos 7] 9—2, tan 7] (136)

7.5 Trigonometric Functions at General Points
7.5.1 The Range of sin and cos

The range of sin and cos go between 1 which we shall now show. To
nd the extrema for sin , we di erentiate and set the value of the derivative
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to zero: d
d—(sin )=cos =0

So we look for values of such that cos = 0. From the de nition of , we
know that cos(=2) = 0, so one extrema for sin is at =2), so:

i — = =1
sin > cos(0)

However, we also know that cos(+ )= cos(), so:
cos +—- = ~cos = =0
2 2
But
sin +—- = sin - = 1
2 2

So there are two extrema for sin,
16 sin 61
The same is true for cos by the same reasoning:

16 cos 61

7.5.2 Trigonometric Functions and the Unit Circle

The values of sin and cos can be plotted on the unit circle,x?>+ y? = 1. In
the picture, some common angles, measured in radians, are giveredsgure-
ments in the counterclockwise direction are positive angles and meesments
in the clockwise direction are negative angles.

Let a line through the origin, making an angle of with the positive half of
the x-axis, intersect the unit circle. Thex and y-coordinates of this point of
intersection are equal to cos and sin , respectively.

The triangle in the graphic enforces the formula; the radius is equéd the
hypotenuse and has length 1, so we have si y=1 and cos = x=1. The
unit circle can be thought of as a way of looking at an in nite humber of
triangles by varying the lengths of their legs but keeping the lengthsf their
hypotenuses equal to 1.
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Figure 50: The Circle
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7.6 tan

Now we have developed sinand cos , now we can make some inroads on
tan , we have de ned: _
sin
tan = —
CoS

The rst thing we note is that tan is odd:

sin sin
tan( )= () = = tan
cos( ) cos
We can also consider:
sin(=2 ) _ cos 1
tan — = = . =
2 cos(=2 ) sin tan

Then with our previous reasoning:

tan §+ = tan 2 ( )
: 1
~ tan( )
: 1
T tan
We move on to:
tan( + ) = tan §+ §+
_ 1
T tan(=2+ )
= fan

So although sin and cos are both 2 -periodic, tan is -periodic. From
the de nition of , we know that:
sin(=2 1
tan — = g = _
2 cos(=2) O
So tan(=2), does not exist as a real number, this is also the case for
tan( =2) = tan(=2). So there is a discontinuity at =2. However
all other values of tan exist, so we can get a well-de ned function for tan,
if we restrict =2< < = 2.

83



tan

Figure 51: tan

7.7 Other Trigonometric Functions

There are other functions associated to the trigonometric funicins, sin |,
cos and tan . They are the secant,cosecant andcotangent, and they are
de ned as follows:

1
cosec = — (137)
sin
1
sec = — (138)
cos
1 cos
cot = — = —F— (139)
tan Sin

In many calculations, you would usually convert all the trigonometridunc-
tions to either sin or cos .

7.8 Double Angle Formulae

We have been learning a great deal about cosand sin but can we write
sin(A + B) and cos@ + B) in terms of cosA, cosB, sinA and sinB, the
answer is yes. The rst thing we notice that\ OUT = =2 A, this is the
same as RUQ, so this in turn means that\ SRQ = A Hence:

TR

OR

TS+ SR
OR

sin(A + B)
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Figure 52: tan

PQ+ SR
OR
PQOQ+ SRQR
OQOR OQROR
= sin AcosB + cosAsinB

So
sin(A + B) =sin A cosB + cosAsinB

Likewise for cosA + B)

ot
OR
OP TP

OR
OP SQ

OR
OPOQ SQRQ

OQOR RQOR
cosAcosB sinAsinB

cos@A + B)

So
cosA + B) =cosAcosB sinAsinB

From the about we can compute tanf + B):

sin(A + B)

tan(A + B) m
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sinA cosB + cosA sinB

cosAcosB sinAsinB
sin A cosB + CcosA sinB
— CcosA cosB cosA cosB
cosA cosB sinA sinB
CcosA cosB COSA cosB

tan A +tan B
1 tanAtanB

So:
tan A +tan B

1 tanAtanB
By replacingB with B, formulae for sinA B), cosA B)andtan(A B)

may be derived. By putting A = B, can can write the equations for double
angles:

tan(A+ B) = (142)

Sin2A = 2sinAcosA (143)
coOSA = cos’A sin*A (144)
2tanA
tan2A = ——— 145
1 tan2A (145)

7.9 Inverse Trigonometric Functions

We have states that a function should map to a unique number, this the
case for trigonometric functions. However the inverse functionhich are
de ned as:

sin (sin ) =

If we restrict the domain to:

=6 6 - 146

So the sin hastherange 16 sin 6 1, sothe domain of sin® is between
1 and 1.

For cos ! , we restrict the domain of cos to 06 6 , and this will allow

for an inverse.

For tan , we already have a well de ned function, so we need not restrict

the domain any further:
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sin

sin

Figure 53: sin

Figure 54: sin?

87




cos !

tan 1

Figure 55: cos?

Figure 56: tan !
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7.10 Trigonometric ldentities

There are a number of identities that the trigopnometric functions atisfy, and
they come straight from the de nitions:

Figure 57: A Right-Angled Triangle

Given a right angled triangle ( gure 57), The de nitions are:

. b
sin = —; cos = —; tan :5 (147)

So we can write:
b= csin; a = ccos

But from Pythagoras' theorema? + k¥ = ¢2, so:
c?cog + st =¢®) cog +sin? =1

This is valid for all values of , such equations where the left hand side is
equal to the right hand side regardless of the value of such equations are
called identities and we use three lines instead of two:

sin® +cos® 1 (148)

There are other forms of this identity, we may divide through by c@s to

obtain: '
sin? N cog 1 e
co¥¢ co¥  cod

Which we obtain:
1+tan?  sed (149)

Likewise we can divide (148) through by si to obtain:
1+cot®>  coseé (150)

Using (148) we can write the equation for cos 2by using co§ =1 sir?
and sit =1 cog as:

cos2 =1 2sirf =2cos 1 (151)
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7.11 Solving Trigonometric Equations
7.11.1 Equations of the form cos = aor sin = a

Suppose we are asked to solve the equation:
1
sin = — 152
5 (152)
There will be an in nite number of solutions to this equation, we will we

restrict our interestto 06 6 3 , plotting the graphy =sin  andy=1=2
and look at the point where the equations:
- L =sin
y - 2’ y -

If we plot these two equations we see that:

1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
08f 1
06F 1
0.4t 1
02t
> o0

-0.2 -

-0.4 -

-0.6 -

-0.8

Figure 58: Solutions of sin = 1=2

There are four solutions to this equation from the graph and we hawo nd
what they are. We know that sin(=6) = 1=2 and this will be the basis of
our solution. Let us examine the quantity sin( ):

sin( ) = sin cos +cos sin( )
=0 1 ( sin)
= sin
So this means that if sin = a then sin( ) = a. So we have found

another solution to our equation, the solution is:

5
= = 153
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As we noted before sin(2+ ) =sin , So immediately we can write down
two more solutions to our equations:

13 5 17
-—+2 = —: —+2 = —
6 6’ 3 6
So the four solution we're looking for are:
5 13 17

6 6 6’ 6
Now let us try another example, what are the solutions to

1
cos = (154)

Over therange 06 6 3

0.8-

0.6

0.4F
0.2
> o
02t
04t
06

-0.8

Figure 59: Solutions of cos=1=2

Our rst solution is =3 from our previous calculations. Now:

cos(2 ) = cos2 cos( ) sin2 sin( )
= cos +0 sin
= cos
So as before if=3 is a solution to our equationthen 2 =3=5=3is a

solution. Finally the other solution in the range is 2 + =3 =7 =3, so the
solutions that we are after are:

5 7
3 3

§;
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8 Exponential and Logarithms

8.1 Exponential Functions

Previously we de ned the numbere, which we called the natural number by

the limit; .

) 1
e=Ilm 1+ = (155)
n'l n
Let's examinee?
1 n n
€ = lim 1+ = lim 1+ =
n'l n n'l1 n
n 2
= lim 1+ —
n'l n
. 1
= lim 1+ —
n!l n

Now letm=2n,ifn!1 thenm!1 also, hence
. 2 M
€=1Ilm 1+ —
m

m!l

Likewise if N is any number, then

) N
eN=1Im 1+ —
n'l n

. We de ne the exponential function €* in the following way:

n
e=lm 1+ (156)
n!l n
We are now in the position to nd out some of the properties of the go-
nential function. Let us examine the derivative of the exponentialunction.
Let h(x) =1+ x=n and g(x) = x", thenf (x) = h g(x) = g(h(x)), we use
the chain rule to show that:

n 1
h go(x):@ @ = nh(x)" ! }: 1+§
AN 0= n(a) 9X x=a n n
So:
X n 1
eIx) = lim 1+ -
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n'l

So the exponential function is its own derivative, it is unique in this rggect,
and is often de ned as the only function whose derivative it itself. Tl next
property is to obtain a series expansion fa*. To do this we Use Maclaurin's
series. We wish to write:

€= ag+ aix + apx?+ agx® + (157)

We tackle this problem much the way beforeg” = 1, so this shows that
a = 1. To nd a;, we dierentiate, Di erentiating the right hand side of
(157) shows that

€ = a; +2aX + 3agx’ + (158)

Setting x = 0 shows that a; = 1, which shows that:
=1+ X+ ax?+ agx®+ (159)
To nd a,, di erentiate (158) to show that:
e =2a, +6azx + (160)

Setting x = 0 shows that a, = 1=2 and so:
X2
=1+ x+5+a3x3+ (161)

To nd a3 di erentiate (160) to obtain:
& = 6ag + (162)
Setting x =0 we nd that az =1=6 = 1=3!, so:

x? x3
e?‘-1+x+z+§+ (163)
It quite easy to show that the general term for the exponential ig"=n!, and
the series is:
)4' Xn

& = L (164)
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Now we can see that all the exponential function really does it takeoprers
of the numbere, so we can easily see that:

&> 0 (165)

for all values ofx. As € > 0, this means also thate*®> 0, so the gradient
at all points is positive, so this means that ifo > a, then €® > e?, so the
exponential function is increasing. From this we can conclude:

lim e = 1 (166)
x!
im e = 0 (167)
x!'1
®
E)3 2 1 3( 1 2 3

Figure 60: Graph off (x) = €

There are functions associated to the exponential function:

+ X
coshx = e Ze (168)
sinhx = ¢ Ze (169)

We will not look into these functions, but use them as examples. Thedha
piece of theory on the exponential function is to compute the destive
of f (x) = €™, this is just a simple application of the chain rule. Write
h(x) = €, thenf (x) = g h(x) = h(g(x)), then applying the chain rule:

dh

— = @, = g4a)
d9 400= ga) dx -



Then we can combine the above to show that:

A% = gix)es™ (170)

8.2 The Logarithm

The logarithm is de ned to be the inverse of the exponential functio, so:

In(e) (171)
e = x (172)

Both the above are equivalent de nitions. Lets look at some of therpperties
of Inx. One important property is In1, now from the second version of
the de nition €"' = 1, but we know from the laws of powers thata® = 1
regardless of the value o, so this means that:

In1=0 (173)
Let's look at the addition of Inx and Iny, then:

eInx+|ny — eInxelny

%)

Sognx*ny = gy, divide through by €% to obtain:

eIn x+iny In(xy) — 1

SoInx+Iny In(xy) =0 which states that:

In(xy)=In x+Iny (174)
ase* and Inx are inverses:
Xa — eIn xa
1
) x = &
) X = e% In x2

So:
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As "% = x, so:
Inx® = alnx (175)

The next question to ask is what is the derivative of Ixx, from the de nition
e"x = x we apply the chain rule,h(x) = e andg(x) =In x, sox = g h(x) =
h(g(x)), to use the chain rule:

dn = dha= g dg =In%a)
A9 4x)- g(a) dX -4
So inserting this into the chain rule:
alnqa) = 1
So,
1
InYa) = 2 (176)

It is not possible to obtain a series irx for In x but it is possible to obtain a
series for In(1 +x), so we assume that:

IN(A+ X) = ag+ ayx + apx? + agx® + (177)

to nd ap, setx =0to ndthat Inl=ay, soay; =0, to nd a;, di erentiate
(177) to obtain:

= a; +2aX + 3agx’ + 178
1+ x 1 2 3 (178)

Setx = 0 to obtain 1 = a, insert this into (178) to get:

=1+2aX +3asx*+ (179)

1+x
To nd a, di erentiate (179) to obtain:

1

T 2a, + 6agx + (180)

To nd a; insert x = 0 into (180) to obtain a, = 1=2. To nd as, di eren-

tiate (180) to obtain:
2

(T+x)3

To nd aginsertx =0in (181) to nd that a3 = 1=3 and the series becomes:

6a3 + (181)

3
InL+x)= x  x2+ % + (182)
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The general term in the series is (1)"*'x"=n and the series is:

% .
N1+ x) = ( 1)”+1XF (183)
n=1

The last piece of theory is the di erentiation off (x) = In g(x), this, like most
things is tackled via the chain rule. leth(x) =In x, thenf (x) = g h(x) =
h(g(x)), the chain rule states that:

d _ dndg
dx  dgdx
Where dh=dg= 1=g(x) and dg=dx= g{x), so:

_ _ gx)
fqx)=g hix)= 90 (184)

The graph of Inx can be obtained from the functiore® in the following way:
y=Inx) &=éd"%=x

So this means that the graph for Irx is the graph fory = €* re ected about
the linet = x

In x

Figure 61: Graph off (x) =In x
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8.3 General Exponentials

Let a > 0, then we de ne the following:
ax = gha (185)

The rst question to ask is how to di erentiate this general exponatial func-
tion, we shall compute the derivative in two ways. First take the logathm
of the general exponential equation,

Iny =In(a*) = xIna

Write g(x) =In x, thenIny =y g(x) = g(y), then by the chain rule:

dg_1 d _
a/— 9 dX(xlna)—lna
Then the chain rule shows that:
1dy _ dy o
y&—lna) &—ylna—alna

The other way to compute the derivative is to use the de nition:
d d
— (@)= (" =¢eg™M"?na=alna
dx ) dx( )

SO we get the same results.

8.4 General Logarithms

We de ned the natural logarithm Inx as the inverse function of the expo-
nential €, suppose we have an equation:

a=b (186)

Then we de ne:
x =log,b (187)

The RHS is pronounced, log to the base a of b. we can relate Jag natural
logarithms, In in the following way:

« ‘o B _Inb
a=Db) In(&)=Inb) xlna=Inb) X_Ina
So equating thex in both cases shows that:
Inb
|Ogab— m (188)
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With this it can be veri ed that the properties for log, are the same for In

log, b = xlog,b

log,(b9 log,b+log,c
log,1 = O

(189)
(190)
(191)

We can also relate logarithms from other bases to each other, cuoles the

equation:

X

a ==c

Then the following is true by taking logs to the base and baseb.
x =log,c; xlog,a=Ilog,cC
Then equating the value ofx, shows that:

log,C
log, a

log,c=

If b= c, then we get the special result:

log, b= log.a

The last thing to calculate is the derivative of logx, we use:

In x
f(x)=log,x= na

Then we simply di erentiate:

fO(X): i

xIlna
Example . solve the equation:
ot % 3x+log 35 2=0
Let us examine each of the terms in this equation in turn.
9tz = 9% Oz
= 9% 3
3% 3
3 32X
3 (3X)2
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The second term can be shown to be:

3x+log35 = 3 3Iog35

= 5 X
Then the equation reduces to the following:
3 (3)? 53 2
Let u = 3%, the equation is reduced to:
3u’) 5u 2=0 (194)
This has the factorisation of:
3u> 5u 2=@u+1)(u 2

So3u+1=0o0r u 2=0,inserting u= 3%, then the solutions reduce to:

As 3 > 0 for all x, the rst solution of the quadratic isn't a solution of the
original equation, the other solution states that 3 = 2, so:

In2
= 2= —
X =109s In3

100



9 Complex Numbers

9.1 The Basics

Suppose we want to solve the the quadratic equatiox? + 1 = 0, inserting
this into the equation to solve quadratics:

o P a1 P P—

x= 2 1 2

0 we can't solve the equation. So we de ne H1e following quantity =
1, and we calli the imaginary number, if i = 1, thenic= 1. All
numbers can be built out of real numbers and imaginary numbers whiave
call complex numbers. A complex number is usually written ag, and we
write z = X+ yi, we add complex numbers in the following way, i#; = a+ bi
and z, = c+ di then:

21+ 2, = (a+ o)+ (b+ d)i (195)

The set of complex numbers is denoted bg, complex humbers obey the the
following sets.

1. order doesn't matter in additionz; + z, = z, + 73
. order doesn't matter in multiplication z,z, = z,z;
. Addition is associative ¢ + z,)+ z3= 23 + (2, + Z3)

. Multiplication is associative €;2,)zz = 21(2,23)

2

3

4

5. There is an associative identitz +0 = z

6. There is a multiplicative identity 1 z= z

7. For everyz, thereisa zsuchthatz+( z)=0

8. For everyz, there is a number ¥z such thatz (1=2 =1
9. The distribution law holds z;(z, + z3) = 212, + 7,23

If z= a+ bi, then we will write down the inverse.

11
z ~ a+bi

_ 1 a bi
" a+ bia bi
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a bi

(a+ bi)(a bi)
_ a bi
~ a(a bi)+ bi(a bi
_ a bi
~ a2 abi+ abi RRi2
_ o a b
T a2+ P
>0 1_a bi
ST 2R (196)
Given a complex numberz = a+ bi, we de ne the complexconjugate,z by:

z=a bi (197)

We can write the real part of a general complex numbex = a+ bi as

Re(z) = a and the imaginary part ofz asIm(z) = b, so the general complex
number can be writtenz = Re(z) + Im(z)i. The modulus of the complex
number is written asjzj, if z = a+ bi, then:

jzi?= zz=(a+ bi)(a bi)= a®+ I (198)

We can now solve quadratics lik? 4x + 13 = 0, inserting this into the
equation for solving quadratics shows:

« = bpb2 4ac
- Zap
(9 ( 42 41 13
B 2 1
_4p16 52
= ——
4 P
4 P
= 2 3%_1

= 2 3

9.2 The Argand Diagram/Complex Plane

Complex numbers can be written in the fornz = (a; b wherez = a+ biand
this notation is suggestive of the usual plane which we're familiar withWe
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can associate thex co-ordinate with Re(z) and the y co-ordinate with Im (z),
so a general complex number = a+ bi as a point on the complex plane. The

Im(z),

z=a+bi

Figure 62: The Complex Plane

argand diagram suggest that it is possible for yet another repregation of
a complex number, the use of polar co-ordinates. Thepdistancés just the
modulus, so for a complex number = a+ bi,r = jzj = a2+ I?, the angle

is called theargument and is written Arg(z). The argument is calculated
as follows:

Arg(z)= =tan ‘! (199)

From the de nition of cos and sin :

Sl

So re-arranging:
a=rcos; b=rsin

As z = a+ bi, we can write it as:
z=r(cos +isin) (200)

This is called the polar form of a complex number.
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Im(z),

a+ bi

A\

Y

Figure 63: The Polar Representation of a Complex Number

Example . Compute the modulus and argument ot =

it on and argant diagram.

Im(z )A

z=—3+i

P 3+i and plot

\/

Figure 64: The Polar Representation ot =
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The modulus can be computed as

7 = "z
4 —p_ P
= ( 3+i)( 3 1)
- @+1+i°3 i 3
P2
= 2

To calculate the Argument, we compute:

Arg(z) =
= tan ! pl—
3
- s
3
- 6
- o
6

So the polar form of the complex number is:
z=2 cos > + isin >
- 6 6

9.3 Other Identities Associate With Complex Num-
bers

9.3.1 Euler's Formula

Previously we computed a series for fa#, there is a special equation called
Eulers formula which deals withe . Then:

é = 1+i + U L Ul U S U

2! 3! 41 51
2 3i 4 5i
= 1+ — —+ —+ — 4+
2! 3! 41 5!
2 4 3 5
= 1 —+ —+ + —+ —+ i
21 4l 31 b5l
= CcoS +isin
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The result

€ =cos +isin (201)
Is known as Eulers formula. Setting = , shows that:
€ +1=0 (202)

which links all the most important numbers in maths. A general compie
number can be written asz = re'

9.3.2 De Moivre's Theorem

We have spoken about the polar representation of a complex numbz =
r(cos +isin ), let us examinez?.

z> = (r(cos +isin ))?

= r?(cos +isin )?

= r2(cog +(isin )®2+2isin cos)

= r2(cog +(i)%(sin )®>+2isin cos)
= r?(co§ sin® +2isin cos)

= r?cos2 +isin2)

So we have shown something rather remarkable!
(cos +sin )2=cos2 +isin2 (203)

A natural question to ask is if this true for general powers, we catompute
for z2 = (r(cos + isin ))3.

3

z 7°

= (r(cos +isin ))r?(cos2 +isin2)

= r3(cos cos2 +(isin )(isin2)+ isin cos2 + isin2 cos )
= r3(cos cos2 sin sin2 +(sin cos2 +cos sin2)i)

= r3(cos( +2 )+ isin( +2))

= r3cos3 +isin3)

z

We can do the same for any whole number and it shows that:

(r(cos +isin ))" =r"(cosn +isinn) (204)
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